2024-02-07
Each including relevant data collection.
Morphometric classification homogenisation protocol
momepy
, libpysal
, neatnet
and the project itself is a public repository.Overall metrics | |
---|---|
Accuracy | 0.59929 |
Weighted F1 score | 0.6222459 |
Micro F1 score | 0.59929 |
Macro F1 score | 0.4828 |
Class F1 scores | |
---|---|
Linear Road Network Developments | 0.188530 |
Large Scale Deelopments | 0.3588 |
Central Urban Developments | 0.482 |
Street-aligned Developments | 0.4836 |
Sparse Rural Deelopment | .468680 |
Sparse Rural Development | 0.513121 |
Urban Developments | 0.642038 |
Sparse Road Network Developments | 0.7192 |
Overall metrics | |
---|---|
Accuracy | 0.40672 |
Weighted F1 score | 0.447 |
Micro F1 score | 0.40672 |
Macro F1 score | 0.2985 |
Class F1 scores | |
---|---|
Large Interconnected Blocks | .260351 |
Aligned Winding Streets | .277410 |
Dense Connected Developments | .296238 |
Large Utilitarian Development | .308157 |
Cul-de-Sac Layout | .468680 |
Sparse Rural Development | .512501 |
Sparse Open Layout | .519002 |
Dense Standalone Buildings | .542844 |
Class F1 scores | |
---|---|
Compact Development | .086292 |
Dispersed Linear Development | .108051 |
Linear Development | .154702 |
Extensive Wide-Spaced Developments | .167201 |
Sparse Road-Linked Development | .179611 |
True labels vs Predicted labels | |
---|---|
![]() |
![]() |
Missclassified labels
True labels vs Predicted labels | |
---|---|
![]() |
![]() |
Missclassified labels
github.com/eurofab-project/eo/tree/main/ai_pipeline
Accuracy | Macro Acc. | F1 (macro) |
---|---|---|
0.66 | 0.48 | 0.36 |
Inverse probability (ordered)
Inverse probability (ordered)
Number of changes from 2016 → 2021
Year transition | Overlap |
---|---|
2016 → 2017 | 0.88 |
2017 → 2018 | 0.88 |
2018 → 2019 | 0.86 |
2019 → 2020 | 0.86 |
2020 → 2021 | 0.88 |
2016 → 2021 | 0.88 |
based on:
Model performance across aggregations
Acc. | Macro Acc. | F1 (macro) | Granularity | |
---|---|---|---|---|
Spatial + urbanity | 0.73 | 0.48 | 0.45 | 12 |
Model performance 1d | 0.74 | 0.63 | 0.58 | 7 |
Temp. high prob. | 0.74 | 0.62 | 0.58 | 7 |
Temp. 1d | 0.74 | 0.68 | 0.64 | 6 |
Visual grouping | 0.83 | 0.72 | 0.67 | 4 |
(Non)urban | 0.97 | 0.83 | 0.78 | 2 |
Spatial singature dataset with K=7
Acc. | Macro Acc. | F1 (macro) | Granularity | |
---|---|---|---|---|
Model performance 1d | 0.74 | 0.63 | 0.65 | 7 |
Model
Output maps
Transferability to other countries