2024-02-07
Each including relevant data collection.
Morphometric classification homogenisation protocol
momepy, libpysal, neatnet and the project itself is a public repository.| Overall metrics | |
|---|---|
| Accuracy | 0.59929 |
| Weighted F1 score | 0.6222459 |
| Micro F1 score | 0.59929 |
| Macro F1 score | 0.4828 |
| Class F1 scores | |
|---|---|
| Linear Road Network Developments | 0.188530 |
| Large Scale Deelopments | 0.3588 |
| Central Urban Developments | 0.482 |
| Street-aligned Developments | 0.4836 |
| Sparse Rural Deelopment | .468680 |
| Sparse Rural Development | 0.513121 |
| Urban Developments | 0.642038 |
| Sparse Road Network Developments | 0.7192 |
| Overall metrics | |
|---|---|
| Accuracy | 0.40672 |
| Weighted F1 score | 0.447 |
| Micro F1 score | 0.40672 |
| Macro F1 score | 0.2985 |
| Class F1 scores | |
|---|---|
| Large Interconnected Blocks | .260351 |
| Aligned Winding Streets | .277410 |
| Dense Connected Developments | .296238 |
| Large Utilitarian Development | .308157 |
| Cul-de-Sac Layout | .468680 |
| Sparse Rural Development | .512501 |
| Sparse Open Layout | .519002 |
| Dense Standalone Buildings | .542844 |
| Class F1 scores | |
|---|---|
| Compact Development | .086292 |
| Dispersed Linear Development | .108051 |
| Linear Development | .154702 |
| Extensive Wide-Spaced Developments | .167201 |
| Sparse Road-Linked Development | .179611 |
| True labels vs Predicted labels | |
|---|---|
![]() |
![]() |
Missclassified labels
| True labels vs Predicted labels | |
|---|---|
![]() |
![]() |
Missclassified labels

github.com/eurofab-project/eo/tree/main/ai_pipeline
| Accuracy | Macro Acc. | F1 (macro) |
|---|---|---|
| 0.66 | 0.48 | 0.36 |

Inverse probability (ordered)

Inverse probability (ordered)

Number of changes from 2016 → 2021

| Year transition | Overlap |
|---|---|
| 2016 → 2017 | 0.88 |
| 2017 → 2018 | 0.88 |
| 2018 → 2019 | 0.86 |
| 2019 → 2020 | 0.86 |
| 2020 → 2021 | 0.88 |
| 2016 → 2021 | 0.88 |


based on:

Model performance across aggregations
| Acc. | Macro Acc. | F1 (macro) | Granularity | |
|---|---|---|---|---|
| Spatial + urbanity | 0.73 | 0.48 | 0.45 | 12 |
| Model performance 1d | 0.74 | 0.63 | 0.58 | 7 |
| Temp. high prob. | 0.74 | 0.62 | 0.58 | 7 |
| Temp. 1d | 0.74 | 0.68 | 0.64 | 6 |
| Visual grouping | 0.83 | 0.72 | 0.67 | 4 |
| (Non)urban | 0.97 | 0.83 | 0.78 | 2 |
Spatial singature dataset with K=7
| Acc. | Macro Acc. | F1 (macro) | Granularity | |
|---|---|---|---|---|
| Model performance 1d | 0.74 | 0.63 | 0.65 | 7 |
Model
Output maps
Transferability to other countries