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1 Executive summary

The detailed classification of urban form can provide valuable insights into the structure
of cities and towns, guide targeted policy applications, and form the backbone of urban
planning. However, classification of this sort are scarcely available and even fewer are
detailed, scalable, and consistent while reflecting the nature of the local data all at the
same time. We often see conceptual classification, which has a tendency to oversimplify
the structure when “zooming in”, loosing the interest of planners and policy-makers.
The classifications developed by key members of the EuroFab project team overcome
these limitations, but are dependent on the availability of high quality data capturing
urban form, e.g. individual buildings and related street networks. The issue is that these
are not always readily available, even within the context of generally data-rich countries
of the European region. Therefore, there is a need to derive such classification from
suboptimal data that do not have the same qualities as, for example, cadastre would
have, but have consistency and continental coverage. This Technical Note outlines the
theoretical and methodological bases for two models - one based on satellite-derived
building footprints; and a second, based on a direct use of Sentinel-2 visible bands. The
models aim to address the data issues presented above, while maintaining the quality of
urban classification needed by practioners.

The first model, which we can call morphological, uses the Microsoft Open Buildings
footprints dataset of a remote-sensing origin and predicts the classes provided by an
authoritative target classification based on cadastral data. It measures morphological
variables based on building footprints, linked to street network coming from the Overture
Maps project and uses the measurements to predict the authoritative classification using
non-linear tree-based ensemble models. The evaluated models are trained using spatially
explicit splits and are extensively tested for a robustness of prediction in an out-of-sample
context. We further use the results of the models as an iterative feedback loop allowing
gap-filling of the original taxonomy when the model detects urban fabric it has not seen
before and is therefore not able to reliably classify.

The second model, which we can call the AI model, works on top of Sentinel-2 visible
bands at 10 meters per pixel resolution, and aims to provide a prediction using the foun-
dational computer vision models, eventually allowing deployment of a predicted time
series followed-up by yearly updates. The related work package compares three different
architectures based on a direct extraction of model embeddings, segmentation, and clas-
sification, based on different foundational models (SatlasPretrain for the embeddings,
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1 Executive summary

SatlasPretrain, Clay, and IBM/NASA’s Prithvi for segmentation, Clay for classifica-
tion). To further improve the model performance and acknowledge the effects of spatial
heterogeneity, models optionally include explicit spatial dimension encoded via H3 grid
locations. Overall, the classification approach with regional information (H3 Level 5)
yielded the best performance, achieving both high accuracy and a reasonable balance
across classes. Additionally, this approach is computationally efficient: once the image
embeddings are generated, the downstream classification process can be completed in
just a few minutes.

2



2 Theoretical basis

This report describes in detail the data, the data preprocessing, as well as model selection,
training and validation schemes. The background section positions the research in the
literature and identifies the drawbacks of current approaches, this study aims to address.
It also provides some background on the study area - Central Europe. The data section
describes the input, output and target data for the model. The methodology section
focuses on the model selection, training and validation approaches.

2.1 Morphometric Classification Homogenisation

The spatial layout of the physical elements of cities - its urban fabric - affects most
activities their residents undertake, from accessing services or jobs to their social and
cultural lives. Analysing the interplay of urban form, land use, mobility and other
dimensions of human activities provides insights into how cities evolve and what effective
developmental policies should look like. Researchers in the field of urban morphology
have spend years in identifying, classifying and analysing the variations in urban form
across cities from all over the world. A core new development, powered by advancements
in spatial data science, computer vision, and open data availability, are the methodologies
created to computationally discern and analyse urban fabric (Fleischmann et al. 2022).
Taken together, these facts have opened up the possibility of a more systematic and
comprehensive approach to the classification of urban morphological patterns, which
in turn can drive our understanding of cities (Calafiore et al. 2023; Arribas-Bel and
Fleischmann 2022).

One factor that limits the wider application of these methods is their dependency on high-
quality data, that is generally not available for every city. For example, (Fleischmann et
al. 2022; Arribas-Bel and Fleischmann 2022) use building polygons from the respective
municipal and national mapping agencies. However, such data is not generally available
even for most high-income countries. And where available, it can come in various formats
and the data itself is not necessarily homogenous, which makes its processing difficult.
For example, official Czechia cadastral building polygons (https://services.cuzk.cz/) come
as a GeoPackage, with no information about building age, height, type or use. In con-
trast, official German building polygons, come separately for every state , typically but
not always as GML data from a WFS service, and sometimes have extra building in-
formation. However, the definition of building is different to Czechia and the polygon
set may include parts of tunnels, overpasses or tram lines. These definitions are even
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2 Theoretical basis

sometimes different in the cases of cities within the same country - i.e. the data for Berlin
and Hamburg is different from the data available for Bremen.

EuroFab aims to address the data availability and processing issues, as well as broaden
the applicability of urban morphometrics. It does this through the development of a
predictive urban morphometric model which uses widely available building footprints to
infer structure of urban form. The model input is calculated directly on satellite-derived
building footprints, which gives it a global scope and thus eliminates the need the data
fusion problems described above. Furthermore, it is trained on a detailed morphometric
classification derived from official cadastre data in a large study area that covers multiple
countries - Poland, Austria, Czechia, Germany and Slovakia, i.e. Central Europe. The
heterogeneity of urban form and planning regimes present in the study area enables the
model to distinguish a rich variety of urban patterns and improves it generalisability.

The specific approach taken has four stages. In the first stage morphological elements
and their characteristics are calculated using the widely available Microsoft building and
Overture Maps Transportation data. These elements are the predictor variables that the
model will use. To achieve this we develop a highly-scalable polygon and street data
pipeline, capable of calculating an exhaustive list of morphometric characteristics. In the
second stage, each element, calculated in the first stage, is assigned a target classifica-
tion label based on spatial overlap with morphological elements from (Fleischmann and
Samardzhiev Forthcoming). (Fleischmann and Samardzhiev Forthcoming) is a classifi-
cation of urban fabrics in Central Europe based on the highest-detail available cadastre
data. Third, the data is then split into five training and testing subsets, so that every
country and every combination of the other four countries are used as test and train-
ing data respectively. Lastly, a series of non-linear models are trained on each subset
to predict the morphological classification of individual elements, using a custom cross-
validation scheme in order to account for spatial leakage. Our training and testing setup
emphasises evaluating the model’s ability to deal with realistic scenarios and with pre-
viously unseen data and new urban fabric types. The best performing model is chosen
as the final production model, and retrained on the whole dataset.

Satellite derived building footprints are becoming more widely adopted, however, the
data does not come without issues. For example, in dense urban centres entire blocks
can be delineated as individual buildings. Given that morphology calculations rely on
precise local topological relations between neighbours, such as two buildings touching,
this problem renders a whole number of possible measurements described in (Fleis-
chmann, Romice, and Porta 2021) meaningless. Furthermore, this issue affects even
simpler calculations such as counting the number of buildings within a radius or topo-
logical neighbourhood. Other issues are that computer vision techniques sometimes
miss entire buildings or misidentify building boundaries. Therefore, any approach that
uses satellite-derived building footprints should be able to account for these three and
potentially other problems.

Implementing these stages, and further realising the potential of the model for global
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application, requires the creation of novel, scalable data processing pipelines capable of
analysing hundreds of millions of morphological elements - buildings, streets and their
derivatives. Due to their scalability, these pipelines can further be reused for other work,
outside of the immediate scope of this projects. To ensure maximum impact and high
standards, all work for this project follows open science principles and is open-sourced
on GitHub.

2.2 AI Modelling using Satellite Imagery

Advancements in satellite imagery and artificial intelligence (AI) have significantly en-
hanced our ability to analyze complex geospatial datasets. Satellite imagery provides
detailed information at varying spatial and temporal scales, enabling applications that
range from analyzing individual buildings to studying entire continents. By extracting
visual and spectral data, satellite images offer insights into ground conditions such as
land cover and land use classification (Esch et al. 2010; Ma et al. 2019; Ibrahim, Ha-
worth, and Cheng 2020; Huang, Zhao, and Song 2018). AI algorithms transform these
data into actionable insights by automating the analysis of vast amounts of pixel-level
information. However, many conventional AI models are designed for specific tasks and
require significant fine-tuning for new applications.

The emergence of foundation models in geospatial AI (GeoAI) marks a transformative
shift. Unlike traditional task-specific models, foundation models are pre-trained on large,
diverse datasets and can be adapted to multiple tasks with minimal additional training
(Rolf et al. 2021). This adaptability is particularly useful in remote sensing, where data
are often complex, integrating multi-spectral and multi-temporal information (Lu et al.
2024).

Foundation models have recently demonstrated superior performance, especially in sce-
narios with limited labeled data. Transformer-based architectures, pre-trained on exten-
sive multispectral datasets, have become central to GeoAI research. Notable examples
include Prithvi (Jakubik et al. 2023) and SatlasPretrain (Bastani et al. 2023), which
were trained on terabytes of imagery and millions of labeled instances. These models
have achieved state-of-the-art results in tasks such as image classification and multi-
temporal image segmentation, illustrating their ability to address diverse and complex
Earth observation challenges.
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3 Algorithm Design

3.1 Morphometric Classification Homogenisation

3.1.1 Model architecture

The model architecture consists of the two main components: 1) derivation of predic-
tive variables, and 2) development of the predictive model. Given the target of the
prediction is morphological classification, we use morphometric measurements based on
the sub-standard satellite-derived data as predictive variables, as they are conceptually
related - the original target classification is a result of unsupervised learning on top of
morphometric measurements based on cadastral data. The model’s main job is then to
capture the shift of meaning of individual characters from the original, when measured
on precise geometries, to the derived one, measured on imperfect representation of ur-
ban form. Given the model will eventually perform a prediction out of the sample, we
further build in a logic identifying the types of urban form it has not seen previously and
ingesting then manually in the original taxonomy, forming an iterative feedback loop.
The whole system is illustrated in Figure 1.
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Figure 3.1: Project workflow

The data preparation and model training consists of four stages. The first and second
stages cover the morphometric characterisation, which acts as the model’s predictor
variables, and the target variables generation. The third stage splits the whole study
area into five subsets, so that every country and every combination of the four other
countries in the area, act as test and training data respectively. The final stage is
the model training and evaluation, aiming to minimise spatial leakage in the training
and evaluation data, and testing the model’s performance on realistic scenarios. The
full model training and evaluation framework will be implemented using scikit-learn
pipelines.

3.1.2 Data preprocessing

3.1.2.1 Building preprocessing

All available Microsoft building footprints for the study area are used for the analysis.
Typically, building polygons required for morphological studies have to be of very high
quality. For example, building polygons overlapping by a thousandth of a millimetre
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break topological contiguity and therefore affect the calculation of morphological proper-
ties, such as the ratio of shared walls, or the number of adjacent buildings. Furthermore,
even the highest quality available software suffers from numerical precision issues which
exasperate the above problem. Another potential issue is the inclusion of artefacts we
are not directly interested in such as sheds or market stalls. Most importantly, polygons
shall represent individual buildings, not compounds of buildings that are adjacent. The
footprints used for this study fall short of these standards. Therefore, our approach
aims to accommodate less than ideal data and methods, first by processing the building
data, and second, by adapting the morphological calculations to account for numerical
issues.

Figure 3.2: Comparison between MS buildings and cadastre level buildings in central
Prague

Before dealing with any morphological assessment, the polygons need to undergo basic
topological preprocessing.

The first step in the building data processing is to split up multi-polygons and make
the geometries valid. The second step, is to simplify the polygons in order to accurately
represent the corners of buildings and other shape related characteristics. Next, to filter
out any buildings that have an area larger than 200,000 sq.m. This is done since some
artefacts such as construction sites, mines or tunnels might be included in the data as
buildings. The next step is to merge overlapping buildings that either: overlap for at
least 10 percent of their areas, or one of them has less than 50 sq.m. in total area.
This is done to merge buildings and building parts, since cadastre definitions of these
two polygon types are inconsistent and sometimes buildings are assigned as building
parts or vice versa. This step merges the buildings and its parts into one polygon.
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Finally, the preprocessing pipeline snaps nearby buildings together and fills gaps in the
polygons that are less than 10 square cm. These two steps aim to address some common
topological issues, such as missing slivers with almost zero areas between multiple or
inside individual building polygons. Nevertheless, even after the preprocessing numerous
topological issues remain and therefore we take this into account in subsequent analysis
steps.

3.1.2.2 Overture Streets

The street network is a direct download from Overture Maps Transportation theme,
a processed subset of data from OpenStreetMap, which has global coverage and high
quality data. Since the dataset includes multiple segments types, including footpaths,
the types of segments used in the analysis are limited to a subset of network that reflects
streets, excluding paths and service roads (among other). Another type of segment that
is filtered out are tunnels - the analysis strictly focuses on two dimensions and therefore
undergrounds structures adversely affect the calculation of boundaries and characters.

The second major stage of the street processing is the simplification of the entire street
network for each subregion. The network coming from Overture Maps, similarly to
nearly any other common source, focuses on representation of street network for trans-
portation purposes. That means it tends to include multiple geometries for wide boule-
vards where each captures a single carriageway, complex representation of junctions
or even the smallest artefacts of transportation-based focus. However, such a network
is not directly usable for morphological analysis as it does not capture morphological
perception of street network which is usually captured via street centrelines, omitting
transportation detail. For this reason, we apply the simplification method based on the
detection of the problematic parts of the network (Fleischmann and Vybornova 2024) by
Fleischmann, Vybornova, and Gaboardi (Forthcoming). This ensures automatised algo-
rithmic cleaning of street networks resulting in a morphological representation derived
from the transportation one.
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Figure 3.3: Streets in central Prague

3.1.3 Morphometric characterisation

The morphometric characterisation is directly derived from the method of (Fleischmann
and Samardzhiev Forthcoming) as closely as possible to ensure that we minimise the
conceptual differences between the methodological backbone using the derivation of the
target classification and the the data used within our model.

3.1.3.1 Subregions split

Since the study area of interest is large and contains tens of millions of buildings, it is
divided into subregions to carry out all computation. The separation is done based on
distances between buildings - buildings are split into subregions such that the building
from one region and its closest neighbour (another building) from another region are
at least 400 meters apart. This custom separation, rather than official administrative
divisions, ensures that all elements that may affect morphological calculations are in
the same set (subregion) and not split across political boundaries. All processing and
character calculations are done for each region independently and in parallel.
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Figure 3.4: All subregions in the study area

3.1.3.2 Elements and units

There are five morphological elements used for the morphometric characterisation - two
base ones - buildings and streets and three derived ones - enclosures, nodes, enclosed
tessellation cells (ETC). Buildings and streets are the two elements from which all other
units are derived. The core unit of analysis in the study is the enclosed tessellation
cell, which breaks down the whole study area into small-scale units, which when taken
together fully cover the area.

3.1.3.2.1 Nodes

The first type of derived element in the study are street nodes, which are defined as
the intersection points between different streets. They are used to calculate characteris-
tics of the street network that capture relationships between streets such as number of
intersections, as well as relationships between neighbouring enclosures and ETCs.
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Figure 3.5: Nodes in central Prague

3.1.3.2.2 Enclosures

Enclosures capture the characteristics of plots of land that contain from none to (usually)
multiple buildings. They are operationalised as land delineations, surrounded by streets
and other physical barriers, which can vary in size depending on the geographic context.
If an area is in the city centre, each enclosure would approximate a single block and
multiple building units, however if it was in an industrial area it would potentially
encompass a single, or very few large buildings. In this study, only the street network
is used for barriers to minimise the data dependency. Furthermore, enclosures are used
to delineate the boundaries of enclosed tessellation cells to the surrounding streets -
i.e. representing physical barriers.

In this study, enclosure delineation is further modified by introducing a variable, indi-
vidual bandwidth for every building, as opposed to the global one used by (Fleischmann
et al. 2022) or none using in generic enclosure delineation. This is done to limit the
boundaries effects around the edges of cities and towns - i.e. cells on the edges of cities
in (Fleischmann et al. 2022) are always large because there are no surrounding buildings
and their cells resemble those of large buildings with lots of empty space around them.
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The limits used here are calculated through a Gabriel graph-based filtration of the subre-
gion, which takes into account the surrounding neighbours structure around every ETC.
For example, in row housing the buffer will be relatively small, in single family housing
estates the buffer will be larger, and in industrial areas larger still; regardless of whether
or not these buildings are in the middle of cities or around their edges. The detailed
technical implementation is out of scope of this Technical Note.

Figure 3.6: Enclosures in central Prague

3.1.3.2.3 Enclosed Tessellation Cells

Enclosed Tessellation Cells are the core unit used for the analysis and the one used
to combine aspects of all of the other four elements. To operationalise it, the study
follows the definition by (Fleischmann et al. 2022) - “the portion of space that results
from growing a morphological tessellation within an enclosure delineated by a series
of natural or built barriers identified from the literature on urban form, function and
perception”, where the morphological tessellation is a delineation of the space based on
Voronoi polygons centred around buildings. The boundaries of ETCs also represent the
closest area of land to each building, than to any other building within an enclosure.
Because of this feature, ETCs intersect with all other elements and are the unit that
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links together the characteristics of the four other elements. In some cases, if there are no
buildings within the enclosure the whole enclosure is treated as an ‘empty’ tessellation
cell.

Figure 3.7: Enclosed tessellation cells in central Prague

3.1.3.2.4 Morphometric Characters

Characteristics describing the interactions of these elements, and the elements themselves
are calculated at three scales: small - covering only aspects of the element; medium -
covering aspects of the element and neighbouring elements and large - covering neigh-
bouring elements up to five topological neighbours. In total there are 52 morphometric
characters calculated described in the list below, which come directly from the list of
characters used to derive the target classification.

1. Area of a building is denoted as

(1) 𝑎𝑏𝑙𝑔

and defined as an area covered by a building footprint in m2 .

2. Perimeter of a building is denoted as

14



3 Algorithm Design

(2) 𝑝𝑏𝑙𝑔

and defined as the sum of lengths of the building exterior walls in m.

3. Courtyard area of a building is denoted as

(3) 𝑎𝑏𝑙𝑔𝑐

and defined as the sum of areas of interior holes in footprint polygons in m2.

4. Circular compactness of a building is denoted as

(4) 𝐶𝐶𝑜𝑏𝑙𝑔 = 𝑎𝑏𝑙𝑔
𝑎𝑏𝑙𝑔𝐶

where 𝑎𝑏𝑙𝑔𝐶 is an area of minimal enclosing circle. It captures the relation of building
footprint shape to its minimal enclosing circle, illustrating the similarity of shape and
circle (Dibble et al. 2015).

5. Corners of a building is denoted as

(5) 𝐶𝑜𝑟𝑏𝑙𝑔 = ∑𝑛
𝑖=1 𝑐𝑏𝑙𝑔

where 𝑐𝑏𝑙𝑔 is defined as a vertex of building exterior shape with an angle between adjacent
line segments ≤ 170 degrees. It uses only external shape (shapely.geometry.exterior),
courtyards are not included. Character is adapted from (Steiniger et al. 2008) to exclude
non-corner-like vertices.

6. Squareness of a building is denoted as

(6) 𝑆𝑞𝑢𝑏𝑙𝑔 =
∑𝑛

𝑖=1 𝐷𝑐𝑏𝑙𝑔𝑖
𝑛

where 𝐷 is the deviation of angle of corner 𝑐𝑏𝑙𝑔𝑖
from 90 degrees and 𝑛 is a number of

corners.

7. Equivalent rectangular index of a building is denoted as

(7) 𝐸𝑅𝐼𝑏𝑙𝑔 = √ 𝑎𝑏𝑙𝑔
𝑎𝑏𝑙𝑔𝐵

∗ 𝑝𝑏𝑙𝑔𝐵
𝑝𝑏𝑙𝑔

where 𝑎𝑏𝑙𝑔𝐵 is an area of a minimal rotated bounding rectangle of a building (MBR)
footprint and 𝑝𝑏𝑙𝑔𝐵 its perimeter of MBR. It is a measure of shape complexity identified
by Basaraner and Cetinkaya (2017) as the shape characters with the best performance.

8. Elongation of a building is denoted as

(8) 𝐸𝑙𝑜𝑏𝑙𝑔 = 𝑙𝑏𝑙𝑔𝐵
𝑤𝑏𝑙𝑔𝐵
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where 𝑙𝑏𝑙𝑔𝐵 is length of MBR and 𝑤𝑏𝑙𝑔𝐵 is width of MBR. It captures the ratio of shorter
to the longer dimension of MBR to indirectly capture the deviation of the shape from a
square (Schirmer and Axhausen 2015).

9. Centroid - corner distance deviation of a building is denoted as

(9) 𝐶𝐶𝐷𝑏𝑙𝑔 = √ 1
𝑛 ∑𝑛

𝑖=1 (𝑐𝑐𝑑𝑖 − ̄𝑐𝑐𝑑)2

where 𝑐𝑐𝑑𝑖 is a distance between centroid and corner 𝑖 and ̄𝑐𝑐𝑑 is mean of all distances.
It captures a variety of shape. As a corner is considered vertex with angle < 170º to
reflect potential circularity of object and topological imprecision of building polygon.

10. Centroid - corner mean distance of a building is denoted as

(10) 𝐶𝐶𝑀𝑏𝑙𝑔 = 1
𝑛 (∑𝑛

𝑖=1 𝑐𝑐𝑑𝑖)

where 𝑐𝑐𝑑𝑖 is a distance between centroid and corner 𝑖. It is a character measuring a
dimension of the object dependent on its shape (Schirmer and Axhausen 2015).

11. Longest axis length of a tessellation cell is denoted as

(11) 𝐿𝐴𝐿𝑐𝑒𝑙𝑙 = 𝑑𝑐𝑒𝑙𝑙𝐶

where 𝑑𝑐𝑒𝑙𝑙𝐶 is a diameter of the minimal circumscribed circle around the tessellation
cell polygon. The axis itself does not have to be fully within the polygon. It could be
seen as a proxy of plot depth for tessellation-based analysis.

12. Area of a tessellation cell is denoted as

(12) 𝑎𝑐𝑒𝑙𝑙

and defined as an area covered by a tessellation cell footprint in m2.

13. Circular compactness of a tessellation cell is denoted as

(13) 𝐶𝐶𝑜𝑐𝑒𝑙𝑙 = 𝑎𝑐𝑒𝑙𝑙
𝑎𝑐𝑒𝑙𝑙𝐶

where 𝑎𝑐𝑒𝑙𝑙𝐶 is an area of minimal enclosing circle. It captures the relation of tessellation
cell footprint shape to its minimal enclosing circle, illustrating the similarity of shape
and circle.

14. Equivalent rectangular index of a tessellation cell is denoted as

(14) 𝐸𝑅𝐼𝑐𝑒𝑙𝑙 = √ 𝑎𝑐𝑒𝑙𝑙
𝑎𝑐𝑒𝑙𝑙𝐵

∗ 𝑝𝑐𝑒𝑙𝑙𝐵
𝑝𝑐𝑒𝑙𝑙
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where 𝑎𝑐𝑒𝑙𝑙𝐵 is an area of the minimal rotated bounding rectangle of a tessellation cell
(MBR) footprint and 𝑝𝑐𝑒𝑙𝑙𝐵 its perimeter of MBR. It is a measure of shape complexity
identified by Basaraner and Cetinkaya (2017) as a shape character of the best perfor-
mance.

15. Coverage area ratio of a tessellation cell is denoted as

(15) 𝐶𝐴𝑅𝑐𝑒𝑙𝑙 = 𝑎𝑏𝑙𝑔
𝑎𝑐𝑒𝑙𝑙

where 𝑎𝑏𝑙𝑔 is an area of a building and 𝑎𝑐𝑒𝑙𝑙 is an area of related tessellation cell (Schirmer
and Axhausen 2015). Coverage area ratio (CAR) is one of the commonly used characters
capturing intensity of development. However, the definitions vary based on the spatial
unit.

16. Floor area ratio of a tessellation cell is denoted as

(16) 𝐹𝐴𝑅𝑐𝑒𝑙𝑙 = 𝑓𝑎𝑏𝑙𝑔
𝑎𝑐𝑒𝑙𝑙

where 𝑓𝑎𝑏𝑙𝑔 is a floor area of a building and 𝑎𝑐𝑒𝑙𝑙 is an area of related tessellation cell.
Floor area could be computed based on the number of levels or using an approximation
based on building height.

17. Length of a street segment is denoted as

(17) 𝑙𝑒𝑑𝑔

and defined as a length of a LineString geometry in metres (Dibble et al. 2015; Gil et
al. 2012).

18. Width of a street profile is denoted as

(18) 𝑤𝑠𝑝 = 1
𝑛 (∑𝑛

𝑖=1 𝑤𝑖)

where 𝑤𝑖 is width of a street section i. The algorithm generates street sections every
3 meters alongside the street segment, and measures mean value. In the case of the
open-ended street, 50 metres is used as a perception-based proximity limit (Araldi and
Fusco 2019).

19. Openness of a street profile is denoted as

(19) 𝑂𝑝𝑒𝑠𝑝 = 1 − ∑ ℎ𝑖𝑡
2 ∑ 𝑠𝑒𝑐

where ∑ ℎ𝑖𝑡 is a sum of section lines (left and right sides separately) intersecting build-
ings and ∑ 𝑠𝑒𝑐 total number of street sections. The algorithm generates street sections
every 3 meters alongside the street segment.

20. Width deviation of a street profile is denoted as
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(20) 𝑤𝐷𝑒𝑣𝑠𝑝 = √ 1
𝑛 ∑𝑛

𝑖=1 (𝑤𝑖 − 𝑤𝑠𝑝)2

where 𝑤𝑖 is width of a street section i and 𝑤𝑠𝑝 is mean width. The algorithm generates
street sections every 3 meters alongside the street segment.

21. Linearity of a street segment is denoted as

(21) 𝐿𝑖𝑛𝑒𝑑𝑔 = 𝑙𝑒𝑢𝑐𝑙
𝑙𝑒𝑑𝑔

where 𝑙𝑒𝑢𝑐𝑙 is Euclidean distance between endpoints of a street segment and 𝑙𝑒𝑑𝑔 is a
street segment length. It captures the deviation of a segment shape from a straight line.
It is adapted from Araldi and Fusco (2019).

22. Area covered by a street segment is denoted as

(22) 𝑎𝑒𝑑𝑔 = ∑𝑛
𝑖=1 𝑎𝑐𝑒𝑙𝑙𝑖

where 𝑎𝑐𝑒𝑙𝑙𝑖
is an area of tessellation cell 𝑖 belonging to the street segment. It captures

the area which is likely served by each segment.

23. Buildings per meter of a street segment is denoted as

(23) 𝐵𝑝𝑀𝑒𝑑𝑔 = ∑ 𝑏𝑙𝑔
𝑙𝑒𝑑𝑔

where ∑ 𝑏𝑙𝑔 is a number of buildings belonging to a street segment and 𝑙𝑒𝑑𝑔 is a length
of a street segment. It reflects the granularity of development along each segment.

24. Area covered by a street node is denoted as

(24) 𝑎𝑛𝑜𝑑𝑒 = ∑𝑛
𝑖=1 𝑎𝑐𝑒𝑙𝑙𝑖

where 𝑎𝑐𝑒𝑙𝑙𝑖
is an area of tessellation cell 𝑖 belonging to the street node. It captures the

area which is likely served by each node.

25. Shared walls ratio of adjacent buildings is denoted as

(25) 𝑆𝑊𝑅𝑏𝑙𝑔 = 𝑝𝑏𝑙𝑔𝑠ℎ𝑎𝑟𝑒𝑑
𝑝𝑏𝑙𝑔

where 𝑝𝑏𝑙𝑔𝑠ℎ𝑎𝑟𝑒𝑑
is a length of a perimeter shared with adjacent buildings and 𝑝𝑏𝑙𝑔 is a

perimeter of a building. It captures the amount of wall space facing the open space
(Hamaina, Leduc, and Moreau 2012).

26. Mean distance to neighbouring buildings is denoted as

(26) 𝑁𝐷𝑖𝑏𝑙𝑔 = 1
𝑛 ∑𝑛

𝑖=1 𝑑𝑏𝑙𝑔,𝑏𝑙𝑔𝑖
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where 𝑑𝑏𝑙𝑔,𝑏𝑙𝑔𝑖
is a distance between building and building 𝑖 on a neighbouring tessellation

cell. It is adapted from Hijazi et al. (2016). It captures the average proximity to other
buildings.

27. Weighted neighbours of a tessellation cell is denoted as

(27) 𝑊𝑁𝑒𝑐𝑒𝑙𝑙 = ∑ 𝑐𝑒𝑙𝑙𝑛
𝑝𝑐𝑒𝑙𝑙

where ∑ 𝑐𝑒𝑙𝑙𝑛 is a number of cell neighbours and 𝑝𝑐𝑒𝑙𝑙 is a perimeter of a cell. It reflects
granularity of morphological tessellation.

28. Area covered by neighbouring cells is denoted as

(28) 𝑎𝑐𝑒𝑙𝑙𝑛
= ∑𝑛

𝑖=1 𝑎𝑐𝑒𝑙𝑙𝑖

where 𝑎𝑐𝑒𝑙𝑙𝑖
is area of tessellation cell 𝑖 within topological distance 1. It captures the

scale of morphological tessellation.

29. Reached cells by neighbouring segments is denoted as

(29) 𝑅𝐶𝑒𝑑𝑔𝑛
= ∑𝑛

𝑖=1 𝑐𝑒𝑙𝑙𝑠𝑒𝑑𝑔𝑖

where 𝑐𝑒𝑙𝑙𝑠𝑒𝑑𝑔𝑖
is number of tessellation cells on segment 𝑖 within topological distance 1.

It captures accessible granularity.

30. Reached area by neighbouring segments is denoted as

(30) 𝑎𝑒𝑑𝑔𝑛
= ∑𝑛

𝑖=1 𝑎𝑒𝑑𝑔𝑖

where 𝑎𝑒𝑑𝑔𝑖
is an area covered by a street segment 𝑖 within topological distance 1. It

captures an accessible area.

31. Degree of a street node is denoted as

(31) 𝑑𝑒𝑔𝑛𝑜𝑑𝑒𝑖
= ∑𝑗 𝑒𝑑𝑔𝑖𝑗

where 𝑒𝑑𝑔𝑖𝑗 is an edge of a street network between node 𝑖 and node 𝑗. It reflects the
basic degree centrality.

32. Mean distance to neighbouring nodes from a street node is denoted as

(32) 𝑀𝐷𝑖𝑛𝑜𝑑𝑒 = 1
𝑛 ∑𝑛

𝑖=1 𝑑𝑛𝑜𝑑𝑒,𝑛𝑜𝑑𝑒𝑖

where 𝑑𝑛𝑜𝑑𝑒,𝑛𝑜𝑑𝑒𝑖
is a distance between node and node 𝑖 within topological distance 1.

It captures the average proximity to other nodes.

33. Reached cells by neighbouring nodes is denoted as

(33) 𝑅𝐶𝑛𝑜𝑑𝑒𝑛
= ∑𝑛

𝑖=1 𝑐𝑒𝑙𝑙𝑠𝑛𝑜𝑑𝑒𝑖
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where 𝑐𝑒𝑙𝑙𝑠𝑛𝑜𝑑𝑒𝑖
is number of tessellation cells on node 𝑖 within topological distance 1.

It captures accessible granularity.

34. Reached area by neighbouring nodes is denoted as

(34) 𝑎𝑛𝑜𝑑𝑒𝑛
= ∑𝑛

𝑖=1 𝑎𝑛𝑜𝑑𝑒𝑖

where 𝑎𝑛𝑜𝑑𝑒𝑖
is an area covered by a street node 𝑖 within topological distance 1. It

captures an accessible area.

35. Number of courtyards of adjacent buildings is denoted as

(35) 𝑁𝐶𝑜𝑏𝑙𝑔𝑎𝑑𝑗

where 𝑁𝐶𝑜𝑏𝑙𝑔𝑎𝑑𝑗
is a number of interior rings of a polygon composed of footprints of

adjacent buildings (Schirmer and Axhausen 2015).

36. Perimeter wall length of adjacent buildings is denoted as

(36) 𝑝𝑏𝑙𝑔𝑎𝑑𝑗

where 𝑝𝑏𝑙𝑔𝑎𝑑𝑗
is a length of an exterior ring of a polygon composed of footprints of

adjacent buildings.

37. Mean inter-building distance between neighbouring buildings is denoted
as

(37) 𝐼𝐵𝐷𝑏𝑙𝑔 = 1
𝑛 ∑𝑛

𝑖=1 𝑑𝑏𝑙𝑔,𝑏𝑙𝑔𝑖

where 𝑑𝑏𝑙𝑔,𝑏𝑙𝑔𝑖
is a distance between building and building 𝑖 on a tessellation cell within

topological distance 3. It is adapted from Caruso, Hilal, and Thomas (2017). It captures
the average proximity between buildings.

38. Building adjacency of neighbouring buildings is denoted as

(38) 𝐵𝑢𝐴𝑏𝑙𝑔 = ∑ 𝑏𝑙𝑔𝑎𝑑𝑗
∑ 𝑏𝑙𝑔

where ∑ 𝑏𝑙𝑔𝑎𝑑𝑗 is a number of joined built-up structures within topological distance
three and ∑ 𝑏𝑙𝑔 is a number of buildings within topological distance 3. It is adapted
from Vanderhaegen and Canters (2017).

39. Weighted reached blocks of neighbouring tessellation cells is denoted as

(39) 𝑊𝑅𝐵𝑐𝑒𝑙𝑙 = ∑ 𝑏𝑙𝑘
∑𝑛

𝑖=1 𝑎𝑐𝑒𝑙𝑙𝑖

where ∑ 𝑏𝑙𝑘 is a number of blocks within topological distance three and 𝑎𝑐𝑒𝑙𝑙𝑖
is an area

of tessellation cell 𝑖 within topological distance three.
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40. Local meshedness of a street network is denoted as

(40) 𝑀𝑒𝑠𝑛𝑜𝑑𝑒 = 𝑒−𝑣+1
2𝑣−5

where 𝑒 is a number of edges in a subgraph, and 𝑣 is the number of nodes in a subgraph
(Feliciotti 2018). A subgraph is defined as a network within topological distance five
around a node.

41. Mean segment length of a street network is denoted as

(41) 𝑀𝑆𝐿𝑒𝑑𝑔 = 1
𝑛 ∑𝑛

𝑖=1 𝑙𝑒𝑑𝑔𝑖

where 𝑙𝑒𝑑𝑔𝑖
is a length of a street segment 𝑖 within a topological distance 3 around a

segment.

42. Cul-de-sac length of a street network is denoted as

(42) 𝐶𝐷𝐿𝑛𝑜𝑑𝑒 = ∑𝑛
𝑖=1 𝑙𝑒𝑑𝑔𝑖

, if 𝑒𝑑𝑔𝑖 is cul-de-sac

where 𝑙𝑒𝑑𝑔𝑖
is a length of a street segment 𝑖 within a topological distance 3 around a

node.

43. Reached cells by street network segments is denoted as

(43) 𝑅𝐶𝑒𝑑𝑔 = ∑𝑛
𝑖=1 𝑐𝑒𝑙𝑙𝑠𝑒𝑑𝑔𝑖

where 𝑐𝑒𝑙𝑙𝑠𝑒𝑑𝑔𝑖
is number of tessellation cells on segment 𝑖 within topological distance 3.

It captures accessible granularity.

44. Node density of a street network is denoted as

(44) 𝐷𝑛𝑜𝑑𝑒 = ∑ 𝑛𝑜𝑑𝑒
∑𝑛

𝑖=1 𝑙𝑒𝑑𝑔𝑖

where ∑ 𝑛𝑜𝑑𝑒 is a number of nodes within a subgraph and 𝑙𝑒𝑑𝑔𝑖
is a length of a segment

𝑖 within a subgraph. A subgraph is defined as a network within topological distance five
around a node.

45. Reached cells by street network nodes is denoted as

(45) 𝑅𝐶𝑛𝑜𝑑𝑒𝑛𝑒𝑡
= ∑𝑛

𝑖=1 𝑐𝑒𝑙𝑙𝑠𝑛𝑜𝑑𝑒𝑖

where 𝑐𝑒𝑙𝑙𝑠𝑛𝑜𝑑𝑒𝑖
is number of tessellation cells on node 𝑖 within topological distance 3.

It captures accessible granularity.

46. Reached area by street network nodes is denoted as

(46) 𝑎𝑛𝑜𝑑𝑒𝑛𝑒𝑡
= ∑𝑛

𝑖=1 𝑎𝑛𝑜𝑑𝑒𝑖
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where 𝑎𝑛𝑜𝑑𝑒𝑖
is an area covered by a street node 𝑖 within topological distance 3. It

captures an accessible area.

47. Proportion of cul-de-sacs within a street network is denoted as

(47) 𝑝𝐶𝐷𝑛𝑜𝑑𝑒 = ∑𝑛
𝑖=1 𝑛𝑜𝑑𝑒𝑖, if 𝑑𝑒𝑔𝑛𝑜𝑑𝑒𝑖 =1

∑𝑛
𝑖=1 𝑛𝑜𝑑𝑒𝑖

where 𝑛𝑜𝑑𝑒𝑖 is a node whiting topological distance five around a node. Adapted from
(Boeing 2017).

48. Proportion of 3-way intersections within a street network is denoted as

(48) 𝑝3𝑊𝑛𝑜𝑑𝑒 = ∑𝑛
𝑖=1 𝑛𝑜𝑑𝑒𝑖, if 𝑑𝑒𝑔𝑛𝑜𝑑𝑒𝑖 =3

∑𝑛
𝑖=1 𝑛𝑜𝑑𝑒𝑖

where 𝑛𝑜𝑑𝑒𝑖 is a node whiting topological distance five around a node. Adapted from
(Boeing 2017).

49. Proportion of 4-way intersections within a street network is denoted as

(49) 𝑝4𝑊𝑛𝑜𝑑𝑒 = ∑𝑛
𝑖=1 𝑛𝑜𝑑𝑒𝑖, if 𝑑𝑒𝑔𝑛𝑜𝑑𝑒𝑖 =4

∑𝑛
𝑖=1 𝑛𝑜𝑑𝑒𝑖

where 𝑛𝑜𝑑𝑒𝑖 is a node whiting topological distance five around a node. Adapted from
(Boeing 2017).

50. Weighted node density of a street network is denoted as

(50) 𝑤𝐷𝑛𝑜𝑑𝑒 = ∑𝑛
𝑖=1 𝑑𝑒𝑔𝑛𝑜𝑑𝑒𝑖 −1

∑𝑛
𝑖=1 𝑙𝑒𝑑𝑔𝑖

where 𝑑𝑒𝑔𝑛𝑜𝑑𝑒𝑖
is a degree of a node 𝑖 within a subgraph and 𝑙𝑒𝑑𝑔𝑖

is a length of a segment
𝑖 within a subgraph. A subgraph is defined as a network within topological distance five
around a node.

51. Local closeness centrality of a street network is denoted as

(51) 𝑙𝐶𝐶𝑛𝑜𝑑𝑒 = 𝑛−1
∑𝑛−1

𝑣=1 𝑑(𝑣,𝑢)

where 𝑑(𝑣, 𝑢) is the shortest-path distance between 𝑣 and 𝑢, and 𝑛 is the number of nodes
within a subgraph. A subgraph is defined as a network within topological distance five
around a node.

52. Square clustering of a street network is denoted as

(52) 𝑠𝐶𝑙𝑛𝑜𝑑𝑒 = ∑𝑘𝑣
𝑢=1 ∑𝑘𝑣

𝑤=𝑢+1 𝑞𝑣(𝑢,𝑤)
∑𝑘𝑣

𝑢=1 ∑𝑘𝑣
𝑤=𝑢+1[𝑎𝑣(𝑢,𝑤)+𝑞𝑣(𝑢,𝑤)]

where 𝑞𝑣(𝑢, 𝑤) are the number of common neighbours of 𝑢 and 𝑤 other than 𝑣 (ie squares),
and 𝑎𝑣(𝑢, 𝑤) = (𝑘𝑢 − (1 + 𝑞𝑣(𝑢, 𝑤) + 𝜃𝑢𝑣))(𝑘𝑤 − (1 + 𝑞𝑣(𝑢, 𝑤) + 𝜃𝑢𝑤)), where 𝜃𝑢𝑤 = 1 if
𝑢 and 𝑤 are connected and 0 otherwise (Lind, González, and Herrmann 2005).
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3.1.4 Target labels

For the second stage, we assign a target classification label to every ETC derived using
the satellite-derived polygons. This is done based on spatial intersection between Euro-
Fab and (Fleischmann and Samardzhiev Forthcoming) ETCs. In cases where there are
multiple detailed tessellation cells that fall within the range of a single EuroFab ETC,
the label is decided based on majority.

Since the final output of (Fleischmann and Samardzhiev Forthcoming) is a hierarchy,
rather than a flat clustering there are several options how to pick the specific target
labels. Generally, clusters lower in the hierarchy represent classifications of urban fabrics
at more granular scales. For example, depending on the hierarchy cutoff point historical
urban areas can be one cluster, or can be separated into two - medieval and industrial-era
urban fabrics.

The specific selection of cutoff points will follow (Fleischmann and Samardzhiev Forth-
coming). The first set of urban fabrics we will aim to predict, broadly differentiates
- different types of houses; from heterogenous historical urbanised areas; from recent
modern urban developments such as apartment blocks and commercial areas; from large
industrial areas.

Figure 3.8: High-level urban fabrics in Prague
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The second set breaks down each of the first sets into multiple subsets. It goes into more
detail and splits the houses into more classes, based on features such as size and proxim-
ity to cities; it also splits the historical areas based on origin - medieval, industrial-era
and others; the modern urban developments into subclasses such as different types of
modernist apartment blocks, commercial areas, offices and others; and the several indus-
trial area types. By analysing the model performance across two different hierarchical
levels, we will understand what is the highest resolution detail the model can predict,
given the shortcomings of the data and which factors affect predictions.

Figure 3.9: More detailed urban fabrics in Prague

3.1.5 Prediction modelling and train/test split

The main aim of the modelling task is to generate a classification of morphological ele-
ments of similar quality to (Fleischmann and Samardzhiev Forthcoming) given the data
quality limitations, albeit flat, not hierarchical. To achieve this we create an evalua-
tion framework for the selection of non-linear tree-based models like a random forest
classifier or an XGBoost model. We use the satellite-derived buildings, their ETCs and
their characteristics as input data and the clusters from (Fleischmann and Samardzhiev
Forthcoming) as target labels for a classification task. The choice of tree-based learning
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models is due to their readily available implementations, high scalability and ability to
quickly offer interpretation insights. Furthermore, they handle well high dimensional
data, non-linear interactions and require minimal hyper-parameter tuning. The flexibil-
ity of the models and the specific training/testing framework setup will allow us to not
just produce a predictive model but also to identify potential areas for improvement in
the original data preprocessing.

Since we want the final production model to be general and applicable to large areas
i.e. whole continents, it needs to be able to handle previously unseen urban fabric types.
For example, an urban morphology type that is present in the test data, or in another
study area, might not be present in the training data and in that case the model should
flag its predicted label as uncertain. This is another area where tree models have an
advantage, since they are ensemble methods and this can help reduces their tendency
to overfit. They also readily provide a confidence score for each prediction which can
be used to flag unseen data. Furthermore, we take extra care to evaluate the final
production models performance in realistic scenarios and the relationship between its
accuracy on test data and whole countries that are not part of the model training or test
data.

To achieve this we split the study area into five subsets and train five independent iter-
ations of each model. This is done so that that every country and every combination of
countries is used as final hold-out test data and training/validation pipeline respectively.
For example, one iteration will use Germany, Poland, Czechia and Austria as part of its
training/validation pipeline, whereas Slovakia will be used as the hold-out data.
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Figure 3.10: Model evaluation and training setup

This strategy acts as an extra check against overfitting and ultimately enable us to see
how the final production model will perform in realistic scenarios - applying it to whole
countries which are not used for the training or testing at all. This comes with at least
two advantages over simply reporting a test score on a random sample. First, it is a
test of model performance on a dataset that does not have any spatial leakage with
the training or testing data. Second, it ensures that we evaluate model performance on
unseen urban fabric types from other countries. We can afford to do this in part due to
the large size of the data we are working with. In every permutation there will be a rich
variety of urban fabrics and tens of millions of ETCs used in the model training.

3.1.6 Training and evaluation

Lastly, after splitting the study area into five subsets, we create a schema that will
dictate how to split the training data of each subset for the classification task. We
use five-fold cross validation for hyper parameter tuning, based on spatial contiguity.
Random subsetting does not work for this study, since we need to account for spatial
dependency and the related data leakage between train and evaluation data. The spatial
leakage comes from both the nature of the data - spatial contiguity is one of the core
aspects of morphological elements - but also from the way characters are calculated
based on various nearest topological neighbours.
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To account for this, we aggregate nearby ETCs into higher granularity spatial units -
level 7 H3 cells - and randomly split these units into five groups, to carry out the cross-
validation training. This ensures that the majority of the ETCs and their neighbours in
one set are not present in the other sets, and therefore spatial leakage is minimised. We
use level 7 H3 cells, which represent a delineation of the globe into hexagons with an
area of approximately 5 sq. km. , rather than enclosures or ETC contiguity, to ensure
that contiguous subsets of test data cover areas of heterogenous elements and present
the model with a realistic validation scenario.

Figure 3.11: Example iteration in a five-fold cross validation split. Only one group is
highlighted in blue, with its ETCs plotted in green, which will be used as a
hold-out data for accuracy evaluation and hyper parameter tuning.
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Figure 3.12: Example hexagon in the validation split

The model training and evaluation will follow standard best practices - model coefficients
and hyper parameter tuning, such as the decision threshold will be optimised based on
the training subset, and all of the data in the hold-out country will be used to give a
final model accuracy score. Specifically, the models will use balanced accuracy as the
optimisation metric in order to account for imbalances in the distribution of urban fabric
classes. The extra validation steps we carry out with the hold-out countries will be used
to used in three ways. First, to contextualise the final models’ accuracy on the test data;
second, to indicate how the model will perform on other countries; and third to see how
it handles urban fabric types not seen in the training in a realistic scenario.

The final production model is trained on the whole dataset, using the same hyper pa-
rameter grid search configuration and training/test spatial split.

3.1.7 Preliminary results

We have implemented a preliminary pipeline that carries out full data preprocessing
- generating morphological elements and characters, assigning target labels and some
exploratory modelling. The core functionality for all of this was made available within
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open-source packages - momepy, libpysal, sgeop (the name of which may eventually
change).

Based on the preliminary results, there are 56,845,150 Microsoft building footprints for
our study area, which are split into 474 subregions. This is significantly less than the
available cadastre data, which has around 88 million buildings and are separated into
828 regions. The number of downloaded, unprocessed streets is similar to those in
(Fleischmann and Samardzhiev Forthcoming) - 23,332,865 - since they cover the same
study area and come from the same source - Overture Maps, which is a processed subset
of OpenStreepMap. However, the number of tessellation cells is the same as the buildings
and therefore less than the cadastre data-based classification. Furthermore, the street
simplification algorithm is affected by the available buildings, and therefore in turn also
affects the tessellation cell boundaries.

These results highlight the effect of the satellite derived building footprints that have
been discussed in the Technical Note D3 . There are significantly less subregions in the
study area primarily due to the effect of the threshold of 10k buildings required for a
region. As the adjacent buildings tend to be merged, the algorithm needs to cover larger
area before reaching the threshold, resulting in the lower number of regions. However,
as the region split is purely procedural step allowing efficient processing of data, this is
not an issue of any sort.

As a first modelling step we tried a random forest (RF) classifier on a subset of the data
covering the region surrounding Prague. The goal was to evaluate the project workflow
and the feasibility of the proposed model architecture, rather than the specific model’s
performance. We trained and tested the same simple RF model on the data within the
same region, split in different ways - one was based on stratified spatial k-fold train/test
splits (our proposed setup) and another based on random train/test splits. The latter
model with random sampling had an accuracy of 0.95 versus an accuracy of 0.68 for
the former model with spatial stratification. The difference in accuracy highlights the
extent of spatial leakage of information and the need for the proposed spatially explicit
train/test/validation split of the data. Otherwise, the performance of the production
model would be significantly lower than what the training data suggest. In any case,
the relatively high accuracy score of the models hint towards the viability of predicting
urban fabric types.

In total, the results point towards two things. First, they further show need for a non-
linear classification model, cable of accounting for the discrepancies between satellite-
derived building footprint and cadastral data. Second, the utility of our designed frame-
work to account for spatial leakage and evaluate model performance in more realistic
scenarios.
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3.1.8 Limitations & Potential problems

One limitation of the approach is its reliance on primarily European data for training
and evaluation. Therefore, the model may struggle to provide meaningful classifications
in other contexts. There is no equivalent in the training data for the vast urban sprawl
patterns present in the United States, for example. Nevertheless, there are urban fabric
types present in the model which are ubiquitous in a lot of non-European contexts, such
as communist planned areas in Asia, historical city centres, single housing areas and
others.

A potential problem is class imbalance when training the model and after was when
calculating its accuracy. If such an issue is present in the country split experiments, we
aim to address it by under-sampling the target classes. We can afford to under-sample,
rather than oversample, since our data covers a large geographical area and each class
has tens of thousands of instances at the very least.

3.2 AI Modelling using Satellite Imagery

In satellite image analysis, classification and segmentation address spatial labelling at
different levels of granularity, with classification assigning a single label to an image tile
or cell, while segmentation provides pixel-level detail. In our study, the label dataset
does not always correspond directly to identifiable features in the imagery, making clas-
sification a potentially more suitable approach as it generalises each tile’s dominant
land cover type without requiring exact pixel alignment. However, we explore both
approaches: classification for a tile-based analysis and segmentation for finer, boundary-
specific mapping. This dual approach enables us to evaluate how each method performs
given the scale and nature of the dataset.

3.2.1 Data preprocessing

For our analysis, we employ two distinct datasets of image tiles at varying scales. These
datasets enable us to evaluate both segmentation and classification tasks for urban fabric
prediction. We choose a larger tile size for the segmentation task since most segmentation
models work better with conventional image sizes (such as 224 x 224 pixels) and they
are also a lot more efficient since the dataset is not as large. For classification, the tile
size represents the scale of the analysis and for that reason we chose a smaller tile size
of 56x56 pixels.

• Segmentation Dataset: Comprising 26,753 tiles, each 224 x 224 pixels (covering
2240 x 2240 meters). Of these, 21,402 tiles are allocated for training, and 5,351 for
testing.
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• Classification Dataset: Comprising 403,722 tiles, each 56 x 56 pixels (covering
560 x 560 meters). The training set consists of 342,648 tiles, with the remaining
61,074 reserved for testing.

To ensure consistency across both tasks, we exclusively use tiles that fully overlap with
the spatial signature labels. This alignment facilitates robust pixel-level comparisons
of classification and segmentation outcomes while maintaining compatibility with our
urban fabric typology as shown below.

3.2.1.1 Unbalanced dataset

A significant challenge in our dataset is class imbalance, where certain urban fabric types
are much more prevalent than others. This imbalance required careful consideration in
model design and loss function selection, prompting us to explore approaches that could
better handle uneven class distributions.

The figure below visualizes the class distribution of spatial signatures, highlighting the
imbalance across different urban fabric types. Notably, the countryside agriculture
and wild countryside classes are more dominant compared to the more urban-centric
classes.
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3.2.1.2 Train/test split

The dataset is divided into 80% for training and 20% for testing across both tasks. The
segmentation and classification datasets share the same test samples, which helps make
the results more comparable and allows us to evaluate performance across both tasks at
the same time.

The figures below show how the training and testing datasets sampled across the whole
study area:
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We used standard, pre-configured neural network setups without tuning the hyperparam-
eters, due to the constraints of the project. As a result, we did not include a validation
split in these experiments.

3.2.2 Model architectures

To assess the performance of different AI models for urban fabric classification and seg-
mentation, we designed three distinct experimental approaches. Each approach leverages
different combinations of pre-trained models and fine-tuning strategies to evaluate their
ability to accurately classify and segment urban fabric types. The following experiments
were carried out to explore the effectiveness of both image embeddings and geospatial
foundation models in addressing the challenges posed by urban fabric analysis:

We conducted three main experiments as part of the AI model design to analyze urban
fabric classification and segmentation.

• Approach A (Embedding approach): We start with a baseline experiment, where
we generate image embeddings using the SatlasPretrain model. These embeddings
are then fed into an XGBoost classifier to predict urban fabric classes.

• Approach B (Segmentation approach): Next, we fine-tune three different geospa-
tial foundation models—SatlasPretrain, Clay, and IBM/NASA’s Prithvi model—
specifically for segmentation tasks.

• Approach C (Classification approach): Finally, we take the best-performing geospa-
tial foundation model from the segmentation experiments (Clay) and fine-tune it
for the classification task.
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To evaluate and compare the results of these approaches, we report weighted pixel-level
accuracy, F1 score, and Intersection over Union (IoU) metrics.

3.2.2.1 Baseline embedding approach (Approach A)

In the first experiment, we implement a baseline approach using image embeddings
created by a geospatial foundation model, followed by classification with an XGBoost
model. This approach is computationally efficient and easy to implement, making it a
good starting point for comparison. Once the embeddings are generated, they can be
directly input into a machine learning (ML) model for classification.

The tiles are processed by the SatlasPretrain model (Bastani et al. 2023), a geospa-
tial foundation model pretrained on more than 302 million labels from remote sensing
and computer vision tasks. We chose this model because it was specifically trained on
Sentinel-2 images, making it a good fit for our dataset.

The model works in two steps:

• Foundation Model: We use a Vision Transformer (ViT) with a Feature Pyramid
Network (FPN) and a pooling layer to generate image embeddings. These embed-
dings are lower-dimensional representations of the images.

• Machine Learning Classifier: The generated embeddings are then passed into an
XGBoost classifier, which predicts the urban fabric classes across England.

The diagram below illustrates this baseline approach:
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Baseline approach (ordinal)

In addition to the basic classification task, we also explored an ordinal regression ap-
proach. Since the urban fabric classes represent a continuum rather than strictly cate-
gorical data, this approach accounts for the ordering between the classes. The following
ordinal mapping was applied to model the spatial signatures:

ordinal_mapping = { 'Wild countryside': 0, 'Countryside agriculture':
1, 'Urban buffer': 2, 'Open sprawl': 3, 'Disconnected suburbia':
4, 'Accessible suburbia': 5, 'Warehouse/Park land': 6, 'Gridded
residential quarters': 7, 'Connected residential neighbourhoods': 8, 'Dense
residential neighbourhoods': 9, 'Dense urban neighbourhoods': 10, 'Urbanity':
11, }

Using this ordinal mapping, the model achieved a Mean Absolute Error (MAE) and
Mean Squared Error (MSE) of 0.28, with an R² score of 0.62. The Sankey diagram
below shows the main misclassifications, which typically occur between similar urban
fabric types.
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For pixel-level comparison, we round the predicted values to the closest class and report
them in the overview in the Preliminary results section.

Baseline approach + spatial context

To further improve model performance, we added spatial context by including regional
geographical information to the predictive model. We thus added the regional H3 reso-
lution 5 code as categorical variable to the machine learning models. The visualisation
below shows the hexagons plotted on top of England.
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3.2.2.2 Segmentation (Approach B)

In this section, we explore segmentation using a fine-tuned geospatial foundation model.
We trained three state-of-the-art models on 224x224x3 image tiles to classify urban fabric
types at a pixel level. Each model was fine-tuned for 10 epochs, and we evaluated their
performance using key metrics. The models we tested vary in architecture and dataset
size, as summarized below:

Model Architecture Dataset Size Image Sources
Satlas 1 SwinT 302M labels Sentinel-2
Clay 2 MAE/ViT 70M labels Multiple+
Prithvi 3 MAE/ViT 250 PB Sentinel-2/Landsat

+Multiple sources include Sentinel-2, Landsat, NAIP, and LINZ
1https://huggingface.co/allenai/satlas-pretrain
2https://huggingface.co/made-with-clay/Clay
3https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M
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These models differ mainly in their backbone architecture and the datasets they were pre-
trained on, which impacts their ability to capture different spatial and spectral features
from the input images.

The following visualisations show the varying model configurations for the three differ-
ent approaches tested for the segmentation task. The main difference is the varying
backbone.

3.2.2.3 Model 1: Satlas

3.2.2.4 Model 2: Clay
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3.2.2.5 Model 3: Prithvi

After fine-tuning each model for 10 epochs, we compared their performance based on
weighted accuracy, Intersection over Union (IoU), and F1 score, among other metrics.
The table below summarizes the results of the segmentation model comparison:

Metric Satlas Clay Prithvi
Weighted Accuracy 0.57 0.72 0.62
Weighted IoU 0.33 0.58 0.41
Weighted F1 0.41 0.69 0.58
Training Time/Epoch 9 mins 8 mins 20 mins
Parameters 90M 86M 120M
Implementation Score 5/10 6/10 7/10

The Clay model outperformed the others across all metrics, demonstrating the best per-
formance in terms of weighted accuracy, IoU, and F1 score, while maintaining reasonable
training times and computational efficiency.

The choice of loss function played a crucial role in the performance of the models. We
found that focal loss was particularly effective in handling class imbalance, a common
challenge in geospatial datasets. When applied with the Clay model, this loss function
led to significant improvements in segmentation accuracy, especially for underrepresented
urban fabric classes.

3.2.2.6 Classification (Approach C)

In Approach C, we focused on fine-tuning a geospatial foundation model for a classifi-
cation task. For this, we used the smaller 56x56x3 image tiles as input. Based on the
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promising results from the segmentation experiments (Approach B), we chose to use the
Clay model as the backbone for this classification task, as it consistently outperformed
the other models across key metrics.

The figure below compares the predicted urban fabric classes from the fine-tuned geospa-
tial foundation model in both the segmentation (Approach B) and classification (Ap-
proach C) tasks. This visual comparison highlights the differences in the model’s perfor-
mance and the class predictions between these two approaches.

While the classification approach (Approach C) tends to overpredict the dominant class,
the segmentation output from Approach B faces challenges in representing useful shapes
for classes with fewer examples. These differences highlight the trade-offs in model per-
formance across tasks with varying data distributions. Additionally, this could suggest
that some spatial signatures lack clear boundaries on the ground, making it difficult for
the segmentation algorithm to accurately detect borders between classes. This insight
underscores the complexities of applying segmentation techniques to spatial data with
ambiguous or overlapping class boundaries.

3.2.3 Evaluation Metrics

To comprehensively evaluate the performance of our models, we used several key metrics
that capture different aspects of model performance:

• Intersection over Union (IoU): This metric quantifies the overlap between predicted
and ground truth segmentations. It ranges from 0 (no overlap) to 1 (perfect over-
lap). IoU is calculated by dividing the area of intersection by the area of the union
between the predicted and actual segmentation masks.

• Weighted F1 Score: The F1 score is the harmonic mean of precision and recall,
offering a balanced measure of both. The weighted F1 score adjusts for class
imbalances by giving more importance to classes with fewer examples. Precision
measures how many of the predicted positives are correct, while recall indicates
how many of the actual positives were correctly identified.
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• Weighted Accuracy: This metric measures the overall proportion of correct predic-
tions, adjusted by class frequencies to address class imbalance. It provides a more
representative performance measure by considering the prevalence of each class in
the dataset.

3.2.4 Preliminary results

Comparing model results directly can be challenging due to differences in image tile sizes
and overlap (e.g., 56px vs. 224px). To ensure a fair comparison, we calculate pixel-level
accuracy scores for each approach. Specifically, we predict the full map for the test
set, compare overlapping tiles (as described in the sampling method), and compute the
following metrics on a per-pixel basis.

3.2.4.1 Overall model performance comparison (Pixel-level)

Our evaluation across the different approaches showed varying levels of performance.
Below is a summary of the performance metrics for each approach:

Approach Global Accuracy Macro Accuracy F1 Score IoU
A:
Classification
(embeddings)

0.76 (0.66) 0.22 (0.13) 0.23 0.63

A:
Classification
+ H3 level 5

0.87 (0.82) 0.42 (0.35) 0.45 0.79

A:
Classification
+ H3 ordinal

0.80 (0.80) 0.26 (0.26) 0.26 0.69

B:
Segmentation
(Clay)

0.73 0.31 0.30 0.58

C:
Classification
(Clay)

0.59 (0.68) 0.09 0.12 0.38

The results in brackets represent the tile-level accuracy, which is typically reported
in classification tasks. However, to facilitate more meaningful comparisons across ap-
proaches, we use pixel-level accuracy for all experiments.

Key observations

• The baseline classification approaches showed varied results:
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– The basic embedding classification approach achieved a global accuracy of
76% (22% balanced), reflecting a strong initial performance.

– When incorporating regional trends, performance improved significantly, with
a global accuracy of 87% (42% balanced), suggesting that regional context
plays a critical role in improving classification accuracy.

– The H3 Level 5 ordinal classification approach also performed well, with an
accuracy of 80% (26% balanced), but it lagged behind in balancing the per-
formance across classes.

• The fine-tuned geospatial foundation model performed better than the fine-tuned
classification models, achieving an accuracy of 0.73 compared to 0.56 for the clas-
sification model (Clay model).

• Overall, the classification approach with regional information (H3 Level 5) yielded
the best performance, achieving both high accuracy and a reasonable balance
across classes. Additionally, this approach is computationally efficient: once the
image embeddings are generated, the downstream classification process can be
completed in just a few minutes.

3.2.4.2 Prediction example: London

To showcase the practical application of the model, we used it to make predictions on
a map of London. This example uses the model from Approach A, which incorporates
regional trends through H3 categories, and generates predictions across the entire country.
The figure below presents a sample prediction for the London area, where each color
represents a different spatial signature, and the background color corresponds to the
ground truth.
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3.2.5 25x25 grid classification pipeline

Following the initial analysis, which demonstrated that the embeddings-based approach
yielded the most favorable results, we extended the classification pipeline to include
testing with a finer grid resolution. Through team discussions, we determined that a
grid size of 25x25 pixels (corresponding to 250x250 meters on the ground) is particularly
well-suited for downstream planning applications. This smaller grid size not only aligns
better with practical use cases but also led to improvements in key performance metrics
such as the overall weighted F1 score and macro accuracy. However, the overall accuracy
is a bit lower, which is for our application not as important.

Tile size Model
Global
Accuracy

MACRO
Accuracy

F1 Score
(balanced)

56x56x3 Classification
(embeddings)

0.76 (0.66) 0.22 (0.13) 0.23

56x56x3 Classification (embeddings)
+ H3 level 5 (cat)

0.87 (0.82) 0.42 (0.35) 0.45
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Tile size Model
Global
Accuracy

MACRO
Accuracy

F1 Score
(balanced)

56x56x3 Classification (embeddings)
+ H3 level 5 (lat/lon)

0.87 (0.81) 0.39 (0.31) 0.42

56x56x3 Classification (embeddings)
+ H3 level 5 ordinal

0.80 (0.80) 0.26 (0.26) 0.26

25x25x3 Classification
(embeddings)

0.73 0.31 0.30

25x25x3 Classification (embeddings)
+ H3 level 5 (lat/lon)

0.81 0.46 0.53

25x25x3 Classification (embeddings)
+ lat/lon

0.89 0.71 0.78

25x25x3 Lat/lon 0.91 0.78 0.83

3.2.6 Sampling experiments

We also evaluated random sampling and H3 resolution 3 regional sampling to assess their
impact on spatial generalization and F1-score performance. While random sampling
ensures diversity and captures localized patterns, it risks spatial leakage, potentially
inflating performance metrics. In contrast, H3-based regional sampling reduces spatial
leakage and offers a more realistic evaluation of generalization but can suffer from unfair
penalization due to the heterogeneity of regions.

Random H3 split (resolution 3)
Ensures that the training and testing
datasets include diverse samples from all
regions, including smaller, localized
patterns that might not appear in every
larger region.

Could lead to under-sampling or
over-representation of certain spatial
signature types if these types are not
evenly distributed across regions.

Increased risk of spatial leakage: test
samples may be geographically close to
training samples, leading to overestimated
performance because the model effectively
sees similar data in training and testing.

Minimizes spatial leakage by ensuring
that test regions are distinct from training
regions. This gives a more realistic
estimate of how the model will generalize
to new, unseen regions.

Random sampling (diversity) benefits the
training process but risks overestimating
performance due to leakage.

Regional splitting (independence) gives a
clearer picture of spatial generalization
but could penalize the model unfairly if
regions are too internally heterogeneous.
Would need to be repeated across k-folds
for possibly ‘fairer’ evaluation.
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3.2.6.1 Model choice based on objective

Goal: - If the goal is to predict locally, then random sampling might align better with
your objectives, as it focuses on learning detailed local variations. - If the goal is to
predict regionally or globally, regional splitting is more suitable because it ensures the
model learns broader generalization patterns.

–> Deployment on all data in the end; pipeline will look the same in the end (sampling
only for reporting)

3.2.6.2 Sampling results

H3 regional sampling showed slightly lower performance, hinting to some spatial leakage
through random sampling.

Approach Res. Sampling Clas/seg
Regional
info

Global
Acc

Macro
Acc F1(macro)IoU

A
(embed-
dings)

56x56 random classification 0.76
(0.66)

0.22
(0.13)

0.23 0.63

A
(embed-
dings)

56x56 random classification H3 res 5
(cat)

0.87
(0.82)

0.42
(0.35)

0.45 0.79

A
(embed-
dings)

56x56 random classification H3 res 5
(lat/lon)

0.87
(0.81)

0.39
(0.31)

0.42 0.78

A
(embed-
dings)

56x56 random regression
(ordinal)

H3 res 5
(lat/lon)

0.80
(0.80)

0.26
(0.26)

0.26 0.69

A
(embed-
dings)

25x25 random classification (0.73) (0.31) (0.3)

A
(embed-
dings)

25x25 random classification (0.81) (0.46) (0.53)

A
(embed-
dings)

25x25 random classification lat/lon (0.89) (0.71) (0.78)

25x25 random lat/lon (0.91) (0.78) (0.83)

A
(embed-
dings)

25x25 H3 res 3
(55,743)

A (embed-
dings)

H3 res 5
(lat/lon)

(0.58) (0.15) (0.15)

A
(embed-
dings)

25x25 H3 res 5
(2,125)

A (embed-
dings)

H3 res 5
(lat/lon)

(0.65) (0.2) (0.21)
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Approach Res. Sampling Clas/seg
Regional
info

Global
Acc

Macro
Acc F1(macro)IoU

A
(embed-
dings)

25x25 H3 res 6
(335)

A (embed-
dings)

H3 res 5
(lat/lon)

(0.72) (0.29) (0.32)

3.2.6.3 Limitations

• Data

– class imbalance:
∗ classification with models with oversampling/undersampling
∗ we fit a weighted (add weights based on distribution) XGBoost model did
not give better results

∗ potential way forward if continues to be a problem: join classes together

• Model constraints and generalisability

– generalisability to other European countries
∗ final model will be fit on urban form –> hopefully improve the model

· more data points of classes with small number of instances
∗ sampling across different countries, the final model will not just be trained
on England but on a range of sample countries, so we are not anticipating
any issues with generalisability

Data Limitations

Class imbalance is a significant challenge in the dataset. To address this, we exper-
imented with classification models using oversampling and undersampling techniques.
Additionally, we trained a weighted XGBoost model, which applied weights based on
the class distribution. However, these approaches did not result in improved perfor-
mance. If class imbalance remains a persistent issue, a potential solution is to merge
similar classes with smaller instance counts to improve representation.

Model Constraints and generalisability The final model will focus on urban form,
a feature that is directly observable in satellite imagery and is expected to enhance pre-
dictive performance. To ensure robustness and broad applicability, the model will not
be restricted to data from England but will incorporate samples from a diverse range
of European countries. This approach is designed to improve the model’s ability to
generalise effectively across different geographic and cultural contexts. Expanding the
analysis to a broader European scope will also help address class imbalance by providing
additional data points for underrepresented classes, further enhancing the model’s pre-
dictions. Consequently, we do not anticipate significant issues with generalisability.
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