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1 Introduction

The spatial layout of the physical elements of cities affects most activities their residents
undertake. Accessibility (Calafiore et al. 2023), subjective experience of the city and
cost of housing (Qiu et al. 2022), as well as energy efficiency (Zhu et al. 2022) are
some of the application areas where urban form is used to guide research, applications
and policy. Due to the numerous patterns, scales and manifestations of urban form,
researchers turn to classification as a method to reduce complexity and group the varia-
tions in urban form into classes. The derived classes vary depending on the application.
Example coarse groups are continuous, discontinuous and non-urban land (European En-
vironment Agency 1990). More detailed groupings capture the characteristics of streets
and buildings, for example organic and gridiron streets (Araldi and Fusco 2024). These
resulting classifications of urban form provide valuable insights into the structure of
cities and towns, guide targeted policy applications, and form the backbone of urban
planning.

However, detailed, scalable, and consistent classifications that reflect the nature of the
local data all at the same time are scarcely available. We often see conceptual classifi-
cation, which has a tendency to oversimplify the structure when “zooming in”, loosing
the interest of planners and policy-makers, i.e. Stewart and Oke (2012). The classifica-
tions developed by key members of the EuroFab project team overcome these limitations
(Fleischmann and Samardzhiev Forthcoming; Fleischmann and Arribas-Bel 2022; Fleis-
chmann et al. 2022), but are dependent on the availability of high quality data capturing
urban form - individual buildings and related street networks. The issue is that these
are not always readily available, even within the context of generally data-rich countries
of the European region. Furthermore, even if countries have high quality building data,
they are typically missing information on the temporal evolution of the elements.

Therefore, there is a need to: one, derive detailed classifications at scale from suboptimal
data that does not have the same qualities as, for example, cadastre would have; and two,
add a temporal dimension to the classification which shows how it evolves over time. Such
a novel classification can improve urban-form related research and policy applications,
by providing researchers, policy makers and practitioners with unprecedented detail and
temporal information on urban form. Existing work can be extended using the new
detailed classes, while new avenues of research can be established using the temporal
dimension.

The strategic goal of the project is to be the basis for subsequent work that will deliver
a practically useful, detailed classification of all European urban fabric across time. The
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1 Introduction

specific immediate aim of the current work is to develop a methodology capable of
achieving the two objectives and verify its validity through a pilot study in Central
Europe and the United Kingdom.

The basis for our work are two models - one based on satellite-derived building footprints;
and a second, based on a direct use of Sentinel-2 visible bands. The overall approach
is to use the first machine learning model to produce training data at scale for the
second AI model, since currently such datasets do not exist, and to finally use the AI
model to derive a detailed temporal classification of urban form in Europe. To further
verify the validity of our approach and the usefulness of the results, we further carry
out consultations with stakeholders from the private sector, local planning departments
and government organisations. This work will give us insights into how to adapt the
methodology and data for practical use cases.

The next three sections of the report describe in more detail the methodological ap-
proaches and results of the three work streams - the first machine learning morphological
model, the second AI vision model, and the stakeholder engagement. The conclusion
section interprets these findings and proposes how to scale the methodology for the
whole of Europe, while highlighting potential limitations. The last Open Science section
highlights the open source software and datasets developed during the project.

More details about the methodology, background and results of each stage of the project
are available in the respective technical notes. The methodology and results from the
report are being prepared for scientific publication in leading urban analytics journals.
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2 Glosary

• Urban Morphometrics - A study of urban form through the means of quanti-
tative assessment of its constituent elements - buildings, streets, plots and their
configurations.

• Morphometric characters / Morphological characteristics - Quantitative
description, typically a measurement, of an element of the built enviroment , like
building area, street width, or local street meshedness.

• Urban fabric / Urban form - The spatial layout of the physical elements that
make up a city.

• Urban fabric classification - The breakdown of urban form into specific classes
such as standalone buildings, interconnected blocks and others. Different applica-
tions and approaches result in different classes at different scales.

• Urban fabric type - A specific class such as standalone buildings, interconnected
blocks or continuous urban fabric and others from a specific classification.

• Spatial signatures - A typology of British urban environments characterised by
both form (physical structure) and function (usage) (Arribas-Bel and Fleischmann
2022; Fleischmann and Arribas-Bel 2022). This framework captures the complexity
of urban areas, offering insights into how different spaces look and operate.

• Spatial train/test split - Spliting the data into training and testing subsets,
while taking into account spatial proximity. The goal is to have testing data which
is geographically separate from the training data, in order to minimise spatial
leakage. Spatial leakage comes from the fact that many geographical phenomena
exhibit spatial autocorrelation and nearby observations tend to be more similar
(or dissimilar of there is negative spatial linakge) to each other. Therefore, splits
in which the training and testing data is geographically nearby, tend to transfer
information from the test data to the training data, therefore artifically increasing
model performance.
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3 Morphological machine learning model

3.1 Methodology

The main aim of the morphological machine learning model is to show that the (Fleis-
chmann and Samardzhiev Forthcoming) urban fabric classification, built on cadastre
data, can be reproduced using more widely available data sources - building footprints
derived from satellite imagery, voluntarily contributed building footprints, i.e. Open-
StreetMap building footprints, or combinations of both - Overture Map. This model
can be later used to expand the cadastral taxonomy and generate training data for the
AI vision model.

The study area covers five countries in Central Europe - Germany, Poland, Slovakia,
Austria, Czechia. These countries were chosen as they cover a large area demonstrating
the ability of the methodology to scale and have a rich variety of urban form types,
developed under different planning regimes.

The bulk of the morphological work can be summarised as:

1. Developing a scalable pipeline to generate morphological characteristics from al-
ternative building footprints

2. Assignment of cadastral urban classes to the alternative building footprints ( the
ground truth for the model training)

3. Training several models in different contexts and evaluating their ability to predict
the assigned cadastral urban form classes , based on the features calculated in 1.

3.1.1 Morphological data pipeline

3.1.1.1 Core data

The core datasets used in the analysis are two types of building footprints - Microsoft
Satellite Building footprints and Overture Maps building footprints - and street geome-
tries from Overture Maps. The street network is a direct download from Overture Maps
Transportation theme, a processed subset of data from OpenStreetMap, which has global
coverage and high quality data. An example for Prague is shown in Figure 3.1.

Figure 3.2 shows a comparison between the cadastral data, Microsoft building footprints
and Overture Maps building footprints. Both types of datasets have issues compared to
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3 Morphological machine learning model

Figure 3.1: Example unprocessed and processed street network.

Figure 3.2: Comparison between building footprint data sources.

5



3 Morphological machine learning model

cadastral information, however they generally have larger coverage. Microsoft building
footprints have almost global coverage and are heterogenous - they come from the same
source. Overture Maps data is more detailed and a combination of datasets, it even
includes some Microsoft footprints. But this heterogeneity can make statistics calculated
in different areas within the whole dataset incomparable to each other.

3.1.1.2 Morphological pipeline

The morphometric characterisation is directly derived from the method of (Fleischmann
and Samardzhiev Forthcoming) to ensure that we minimise conceptual differences be-
tween the methodological backbone used to derive the target classification and the data
used within our model. Therefore, we focus the morphological characterisation around
the concept of Enclosed Tessellation Cells (Fleischmann et al. 2022) - “the portion of
space that results from growing a morphological tessellation within an enclosure delin-
eated by a series of natural or built barriers identified from the literature on urban
form, function and perception”. In this definition, the morphological tessellation is a
delineation of the space based on Voronoi polygons centred around buildings and an
enclosure is any area enclosed by streets. The boundaries of ETCs also represent the
closest area of land to each building, than to any other building within an enclosure, and
therefore can act as the unit that combines aspects of building and street morphological
characteristics.

Broadly the pipeline can be summarised as:

1. Street & building preprocessing. This includes downloading the streets and build-
ings, simplifying the street network, and fixing topological issues with the building
footprints.

2. Generating derived morphological elements - street nodes, street enclosures, En-
closed Tessellation cells.

3. Calculating 52 morphological characteristics which capture aspects of all individual
elements (i.e. building area or perimeter), as well as their interactions - for example,
buildings per street or number of reachable ETCs within five topological steps of
the street network.

This pipeline results in around 62 million ETCs with 52 morphological characteristics for
the Microsoft data, and around 88 million ETCs with 52 morphological characteristics
for the Overture Maps data.

3.1.2 Ground truth classes

6



3 Morphological machine learning model

Table 3.1: Cluster descriptions
Cluster name Cluster Description
Dense
Connected
Developments

In this cluster, the built-up density and local street connectivity are
high, while inter-building distances remain relatively small.
Buildings frequently share walls, forming larger structures along
relatively short and narrow streets.

Large
Interconnected
Blocks

This cluster has very high built-up density and local street
connectivity, with narrow and short streets. It is primarily
characterised by a high count of connected buildings forming
enclosed blocks with courtyards. Furthermore, the distances
between the formed blocks is small.

Dense
Standalone
Buildings

This cluster has moderate to high built-up density and local street
connectivity, with longer and wider streets compared to other dense
developments. Shared walls between buildings are less common,
and distances within buildings are moderate, reflecting a pattern of
standalone structures within a robust street network .

Compact
Development

Development in this cluster is characterised by a high number of
buildings and relatively dense local street connectivity, with short
and narrow streets. Shared walls appear regularly, and
inter-building distances are relatively small, with building sizes
being typically small and uniform.

Cul-de-Sac
Layout

Development in this cluster is characterised by a moderate to high
built-up density, short and moderately dense locally street
connectivity. A distinguishing feature is the significant presence of
cul-de-sacs. The buildings along the streets are relatively smaller,
and more numerous, than in Aligned Winding Streets.

Aligned
Winding Streets

This cluster has low to moderate built-up and street connectivity.
Buildings exhibit a consistent alignment among themselves and also
along streets of varying length, width and linearity. There is also a
significant number of shared walls between structures.

Sparse Rural
Development

This cluster has a sparse built-up area with low street connectivity
and messiness. The streets are long and the widest in the
taxonomy, while the distance between buildings is the largest.
Adjacency between structures is also the lowest.

Dispersed Linear
Development

This cluster has a moderate built up area and the lowest local
street connectivity in the taxonomy, typically forming long linear
villages. Its streets are the longest, linear, wide and have
considerable distances between street intersections, and minimal
shared walls between structures.
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3 Morphological machine learning model

Cluster name Cluster Description
Linear
Development

This cluster has a moderate built up area and the low local street
connectivity in the taxonomy, typically forming long linear villages.
Its streets are long, linear, wide and there are minimal shared walls
between structures. Its distinguishing features from “Extended
Linear Development” is the shorter streets and relatively higher
street connectivity.

Sparse Open
Layout

This cluster is characterized by low built-up density, low street
connectivity, large distances between buildings, few shared walls,
and large open spaces around buildings. The streets are few, open
and wide. The buildings are moderate in size and more diverse
than those in the Sparse Road-Linked Development cluster.

Sparse
Road-Linked
Development

This cluster is characterized by low built-up density, low street
connectivity, large distances between buildings, few shared walls,
and large open spaces around buildings. The streets are few, open
and wide. In contrast, with ‘ Sparse Open Layout’ the buildings are
smaller and more uniform.

Large Utilitarian
Development

This cluster consists of the largest buildings with notable variations
in size and shape, as well as low to moderate street connectivity
and wide streets. The design does not emphasise sunlight exposure,
creating broad but less refined configurations, typical of industrial
and other service areas.

Extensive
Wide-Spaced
Developments

This cluster consists of the large buildings with moderate variations
in size and shape, as well as low to moderate street connectivity and
wide streets. The resulting environment is spacious, with significant
open areas between structures, typical of modernist housing.
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3 Morphological machine learning model

Table 3.2: Taxonomic tree
Level 1 Level 2 Level 3 Level 4
Traditional
Street Network

Central Urban
Developments

Central Urban
Developments

Dense Connected
Developments
Large Interconnected
Blocks

Traditional Urban
Developments

Dense Urban
Developments

Dense Standalone
Buildings
Compact
Development

Street-aligned
Developments

Aligned Winding
Streets
Cul-de-Sac Layout

Utilitarian Street
Network

Utilitarian street
network

Large Scale
Developments

Large Utilitarian
Development
Extensive
Wide-Spaced
Developments

Sparse Road
Network
Developments

Sparse Open Layout

Sparse Road-Linked
Development

Linear & Rural
Development

Linear Road
Network
Developments

Dispersed Linear
Development

Linear Development
Sparse Rural
Development

Sparse Rural
Development

The taxonomy of ground truth classes from (Fleischmann and Samardzhiev Forthcoming)
and available as an interactive map online at HiMOC is presented in Table 3.2. The
descriptions for the level 4 classes are available in Table 3.1. All subsequent analysis
focuses on Levels 3 and 4. The target labels from this are assigned to each building from
the morphological pipeline based on spatial intersections.

3.1.3 Modelling scenarios

Figure 3.3 shows the all experiments that will be performed for each dataset. The main
goal with so many training / testing configurations is to get detailed statistics about
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3 Morphological machine learning model

Figure 3.3: Train/test data splits for different models.

the expected model performance in realistic scenarios - predicting urban form in various
types of new environments. Two models - a global random model and a global spatially
explicit model - are trained to highlight the effects of spatial lag in model training and
testing, while the country specific models are trained to evaluate the ability of the models
to generalise outside of the training data scope. The train / test configuration for the
spatially explicit model first delineates the study area into h3 level second hexagon cells
with an area of around 500 sqm. The dataset is then split into train and test subsets
randomly, but ensuring that all buildings within a hexagon are either part of the train
or test subset.

In total we test 24 models to gain information about the predictability of detailed urban
form classes. All experiments are repeated independently for each dataset - once for
the Overture and once for the Microsoft building footprints - and for each of Level 3
and Level 4 of the taxonomy. This is done to verify in which cases, what data can
be used to derive detailed urban form classifications. The models for each experiment
are HistogramGradientBoostingClassifier and share the same parameters - no maximum
depth, no maximum leaf nodes, max_features = 0.5, learning_rate = .03 . All training
was done on one machine - Ubuntu 24.04 LTS, AMD Ryzen 9 9900X 12-Core Processor,
128 GB RAM. Total training time for all 24 models was around 12 hours, and each model
was around 40GB in size. The training time and model size can be significantly reduced,
without much loss of accuracy by specifying the maximum depth, or the maximum leaf
nodes parameters.
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3 Morphological machine learning model

Table 3.3: Overall F1 scores at level 3

(a) Microsoft building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.74 0.66 0.59 0.54 0.60 0.59 0.63 0.56
Micro F1 0.74 0.65 0.57 0.53 0.61 0.58 0.62 0.53
Macro F1 0.73 0.63 0.48 0.45 0.54 0.47 0.49 0.45

(b) Overture building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.74 0.66 0.59 0.51 0.61 0.62 0.65 0.59
Micro F1 0.74 0.66 0.58 0.50 0.61 0.61 0.63 0.56
Macro F1 0.74 0.64 0.50 0.46 0.57 0.49 0.53 0.47

Table 3.4: Individual F1 scores for level 3 clusters

(a) Microsoft building footprints
Random Spatial OoS SK PL DE AT CZ

Central Urban Developments 0.62 0.56 0.46 0.37 0.45 0.51 0.50 0.47
Dense Urban Developments 0.73 0.67 0.65 0.64 0.70 0.64 0.66 0.62
Large Scale Developments 0.54 0.46 0.42 0.34 0.55 0.37 0.39 0.42
Linear Road Network Developments 0.87 0.67 0.36 0.45 0.59 0.36 0.20 0.20
Sparse Road Network Developments 0.79 0.71 0.64 0.52 0.70 0.61 0.73 0.64
Sparse Rural Development 0.87 0.71 0.38 0.31 0.46 0.18 0.47 0.47
Street-aligned Developments 0.70 0.63 0.46 0.56 0.33 0.59 0.49 0.32

(b) Overture building footprints
Random Spatial OoS SK PL DE AT CZ

Central Urban Developments 0.74 0.69 0.59 0.41 0.62 0.67 0.65 0.62
Dense Urban Developments 0.72 0.67 0.65 0.64 0.69 0.64 0.66 0.63
Large Scale Developments 0.54 0.45 0.40 0.36 0.55 0.36 0.38 0.34
Linear Road Network Developments 0.86 0.66 0.38 0.46 0.60 0.36 0.26 0.23
Sparse Road Network Developments 0.78 0.70 0.64 0.49 0.69 0.60 0.73 0.67
Sparse Rural Development 0.85 0.71 0.39 0.36 0.47 0.16 0.51 0.47
Street-aligned Developments 0.69 0.62 0.46 0.49 0.35 0.60 0.51 0.35
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3 Morphological machine learning model

Table 3.5: Overall F1 scores at Level 4

(a) Microsoft building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.59 0.52 0.38 0.38 0.42 0.36 0.44 0.29
Micro F1 0.59 0.52 0.37 0.38 0.42 0.37 0.40 0.28
Macro F1 0.59 0.49 0.30 0.30 0.35 0.31 0.30 0.26

(b) Overture building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.70 0.55 0.41 0.35 0.43 0.41 0.49 0.39
Micro F1 0.70 0.54 0.40 0.34 0.43 0.41 0.46 0.36
Macro F1 0.71 0.54 0.34 0.30 0.38 0.35 0.36 0.32

3.2 Results

3.2.1 Discussion

3.2.1.1 Urban Morphology

With regard to urban morphology, the results show that deriving detailed urban mor-
phology classes from alternative data sources is possible. However, morphological types
are heterogeneous, and the characteristics and factors that are important vary across
scales of dissimilarity.

The modelling results show that a lot of useful information can be learned morphologi-
cally from one country and transferred to new contexts. Table 3.3 shows that at Level
3, the out-of-sample (OoS) averages are close to the spatial split F1 score of approxi-
mately 0.6. This is comparable to other land use prediction models, with two caveats.
First, we are making predictions at a much higher level of detail—the individual building
level—than typical land use models. Second, we test the models in a more difficult but
more realistic scenario and report the possible out-of-sample scores. Furthermore, the
higher scores in Table 3.3, as well as the confusion matrix in Figure 3.4, also suggest
that we make reasonable misclassifications—one class at Level 4 is often misclassified as
another Level 4 class within the same Level 3 category, i.e., part of the same branch in
the ground truth taxonomy. If this were not the case, the Table 3.3 F1 scores would be
equal to or lower than the Table 3.5 scores.

Nevertheless, in spite of these results, urban morphology remains highly heterogeneous.
The differences between the country-specific models reflect the ability to use information
from the analysed urban forms of several countries to infer the urban form type in an
unseen country. If the results across these models were similar, it would imply that

12



3 Morphological machine learning model

Table 3.6: Individual F1 scores for level 4 clusters

(a) Microsoft building footprints
Random Spatial OoS SK PL DE AT CZ

Aligned Winding Streets 0.51 0.45 0.28 0.35 0.21 0.36 0.28 0.18
Compact Development 0.59 0.55 0.13 0.15 0.09 0.24 0.09 0.08
Cul-de-Sac Layout 0.57 0.52 0.43 0.52 0.31 0.52 0.47 0.32
Dense Connected Developments 0.50 0.46 0.33 0.29 0.29 0.45 0.33 0.29
Dense Standalone Buildings 0.63 0.56 0.54 0.53 0.65 0.38 0.55 0.57
Dispersed Linear Development 0.91 0.64 0.19 0.17 0.34 0.18 0.06 0.18
Extensive Wide-Spaced Developments 0.41 0.31 0.25 0.25 0.46 0.13 0.19 0.25
Large Interconnected Blocks 0.36 0.28 0.24 0.22 0.17 0.37 0.30 0.15
Large Utilitarian Development 0.49 0.40 0.32 0.23 0.34 0.36 0.34 0.34
Linear Development 0.73 0.50 0.28 0.37 0.43 0.29 0.13 0.16
Sparse Open Layout 0.62 0.56 0.31 0.14 0.36 0.32 0.50 0.24
Sparse Road-Linked Development 0.57 0.46 0.27 0.40 0.32 0.29 0.17 0.19
Sparse Rural Development 0.79 0.69 0.39 0.29 0.54 0.17 0.49 0.47

(b) Overture building footprints
Random Spatial OoS SK PL DE AT CZ

Aligned Winding Streets 0.61 0.46 0.29 0.28 0.27 0.37 0.31 0.25
Compact Development 0.66 0.55 0.16 0.09 0.12 0.30 0.18 0.11
Cul-de-Sac Layout 0.65 0.51 0.42 0.48 0.31 0.50 0.47 0.32
Dense Connected Developments 0.67 0.58 0.43 0.30 0.44 0.58 0.39 0.44
Dense Standalone Buildings 0.69 0.57 0.53 0.53 0.63 0.36 0.53 0.61
Dispersed Linear Development 0.96 0.65 0.16 0.09 0.31 0.16 0.07 0.19
Extensive Wide-Spaced Developments 0.52 0.36 0.27 0.30 0.47 0.13 0.23 0.22
Large Interconnected Blocks 0.69 0.60 0.46 0.41 0.35 0.57 0.57 0.42
Large Utilitarian Development 0.60 0.44 0.37 0.28 0.37 0.42 0.38 0.41
Linear Development 0.88 0.53 0.30 0.37 0.44 0.29 0.21 0.18
Sparse Open Layout 0.74 0.61 0.36 0.07 0.38 0.34 0.61 0.38
Sparse Road-Linked Development 0.72 0.49 0.29 0.37 0.34 0.32 0.21 0.21
Sparse Rural Development 0.88 0.71 0.41 0.35 0.55 0.15 0.50 0.47
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3 Morphological machine learning model

Figure 3.4: Confusion matrix for the Spatial model Level 4 predictions. Normalised by
the True Label (row-wise)
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3 Morphological machine learning model

urban form is similar across countries. The large differences suggest that underlying
national phenomena affect morphology. While this in itself is not a new finding, it has
not been quantitatively demonstrated before, especially based on tens of morphologi-
cal characteristics calculated using tens of millions of urban geometries across several
countries.

This heterogeneity, however, varies. Austria has, on average, the most similar morphol-
ogy to the other four Central European countries, whereas Czechia and Slovakia are the
most different. The level of morphological detail at which the analysis is carried out
also has an effect. At Level 3 of the morphological taxonomic tree the results across
countries are relatively more similar than at Level 4. Furthermore, Dense Standalone
Buildings , Large Interconnected Blocks , Large Utilitarian Development, are
more predictable across all the country models than other classes.

Identifying different types of urban form also requires specific types of characteristics
and data quality. The relative overall similarity between the scores in Table 3.3a and
Table 3.3b suggests that, except in the case of Central Urban Developments, building
polygon quality is not that important. Conversely, since the street network is shared,
the results show the importance of the street network and how it can compensate for
poor-quality building footprint data. As the required level of detail increases, however
(see Table 3.5a and Table 3.5b), data quality and aspects of building morphology such
as adjacency, configuration, and shape become more important.

3.2.1.2 Morphological data

The results also suggest that heterogeneous but more detailed data is preferable to
homogeneous but coarser data for urban morphological analysis. Furthermore, the mor-
phological pipeline developed for cadastre data can be run without modification on both
the Microsoft (homogeneous, generally more detailed) and Overture maps data (hetero-
geneous, generally more detailed).

The overall higher or equivalent performance of Overture maps data shows that this
data should be used when possible to identify urban morphological types for countries
not in the training data. Overture maps’ schema and easy access to the OpenStreetMap
street networks are additional benefits. Taken together, the results show that, overall,
when cadastre data is not available, Overture maps data should be used in place of
satellite-derived footprints.

The consistently higher performance of the spatial models also suggests using as much
data as possible in model training, from any source, since it provides some local con-
text.
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3.2.1.3 Spatial modelling

The results from the comparisons highlight the need for complex train/testing dataset
splits when training models in the presence of spatial autocorrelation. When reporting
accuracy scores, many land use prediction models do not take into account spatial au-
tocorrelation. As consistently shown in the F1 score tables in this work, this results in
artificially higher scores. Even worse, in the case of more complex models, they may
not be learning the weights necessary to perform inference, but rather overfitting and
memorising the training data. This work further shows that, for urban morphological
predictions and analysis specifically, spatial leakage is ubiquitous.

There are other works and papers that have highlighted the need for spatially stratified
training of models. They suggest various schemes to split the data spatially - predefined
grids or locally derived boundaries or other approaches all together. What this paper
further highlights is the need to consider not just the specific type of spatial stratification,
but the scale of stratification as well. The consistently lower scores for the spatial split
and the individual countries models highlight the fact that there is spatial autocorrelation
of morphological features at multiple scales - local, as defined in this work based on h3
level 7 grid cells, and national as defined by national boundaries.

In the specific case of urban morphology, there are also other possible scales to consider,
such as regional or city-level, which could also affect predictions. We focused specifically
on the national scale, since data quality from OpenStreetMap varies widely at that level.
Furthermore, the most common use case for the model would be to predict morphologi-
cal classes for an entire country that is not part of the training data. Nevertheless, the
implications of our results are that when modelling spatial phenomena using machine
learning models, train/test splits should account for the specific properties of the phe-
nomenon under analysis. Works that do not explicitly do this risk reporting artificially
high accuracies that do not reflect real model use cases.
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4 AI-Based Urban Fabric Classification
using Satellite Imagery

Urban areas represent complex and dynamic environments, making traditional analysis
challenging due to their diverse characteristics. Remote sensing technologies, particularly
satellite imagery, provide powerful tools for understanding and characterising urban ar-
eas at scale. As part of the EuroFab project, we employed AI modelling techniques using
Sentinel-2 satellite imagery to classify and analyse urban fabric across Great Britain. The
aim was to generate detailed insights into urban spatial structures and track temporal
changes spanning from 2016 to 2021.

4.1 Data and Methods

4.1.1 Satellite Imagery

We utilised two different sets of satellite images derived from Sentinel-2 imagery:

1. GHS-composite-S2 R2020A dataset (Corbane et al. 2020): Covering January
2017 to December 2018, this dataset offers cloud-free, consistent, high-quality RGB
(red, green, blue band) composite imagery at a resolution of 10 meters per pixel.
We used these images of Great Britain (GB) to train our prediction model.

2. Annual Sentinel-2 composites: Created for each year from 2016 to 2021, these
composites include only cloud-free RGB images from their specific year. We ac-
quired these using the Google Earth Engine API through automated Python scripts
(as described in GEE pipeline).

Sentinel-2 data is particularly suitable for our application due to several advantages:

• Consistent and openly available global coverage, ideal for cross-regional compar-
isons

• Temporal flexibility through composites from multiple time points, allowing anal-
ysis of urban patterns over time

• Resolution of 10 meters per pixel, providing sufficient detail to distinguish urban
features at the neighbourhood scale

• Compatibility with many pre-trained geospatial AI models, facilitating transfer
learning
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4 AI-Based Urban Fabric Classification using Satellite Imagery

4.1.2 Urban Fabric Classes

The urban fabric predictions from our AI model are based on labels from the Spatial
Signatures Framework (Arribas-Bel and Fleischmann 2022; Fleischmann and Arribas-Bel
2022), which provides a typology of British urban environments characterised by both
form (physical structure) and function (usage). This framework captures the complexity
of urban areas, offering insights into how different spaces look and operate.

While our primary focus is on urban fabric classification centred on form—an approach
that may be simpler since form is visible in imagery—we currently use the Spatial Sig-
natures Framework as a proxy due to its conceptual alignment with our goals for urban
characterisation. This decision was influenced by the limited project duration and the
fact that the morphotope-based classification only became available in Q4 2024.

To ensure progress in developing the AI model, we use separate input classifications for
the morphological and AI components of the project. The expectation is that the two
classifications are conceptually similar, allowing the model architecture developed for
Spatial Signatures to later support building an equally or more precise predictive model
for the morphotope-based classification.

4.2 Model Design

4.2.1 Classification vs. Segmentation

In satellite image analysis, classification and segmentation address spatial labelling at
different levels of granularity:

• Classification: Assigns a single urban fabric type to an image tile, offering gen-
eralised insights into dominant urban characteristics without the need for pixel-
perfect alignment.

• Segmentation: Assigns urban fabric types at a pixel level, providing detailed
boundary-specific mapping but facing challenges due to ambiguous class bound-
aries in urban environments.

In our study, the label dataset does not always correspond directly to identifiable fea-
tures in the imagery, making classification a potentially more suitable approach as it
generalises each tile’s dominant land cover type without requiring exact pixel alignment.
However, we explored both approaches to evaluate how each method performs given the
scale and nature of the dataset.
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4.2.2 Scale

We tested multiple scales for our analysis: - Segmentation at the pixel level (preprocessed
into 224×224 pixel tiles for compatibility with downstream models) - Classification at
scales of 56×56 pixels (560×560 meters on the ground) and 25×25 pixels (250×250
meters on the ground)

4.2.3 Sampling

We evaluated two sampling approaches to assess their impact on spatial generalisation
and F1-score performance:

1. Random sampling: Ensures diversity and captures localised patterns, but risks
spatial leakage, potentially inflating performance metrics.

2. H3 resolution 3 regional sampling: Reduces spatial leakage and offers a more
realistic evaluation of generalisation but can suffer from unfair penalisation due to
the heterogeneity of regions.

4.3 Experimental Approaches

We structured experiments around three distinct modelling approaches:

• Approach A: Baseline model employing SatlasPretrain embeddings coupled with
an XGBoost classifier.

• Approach B: Fine-tuned three geospatial foundation models (Satlas, Clay, Prithvi)
specifically for segmentation tasks.

• Approach C: Fine-tuned the Clay model for classification tasks based on its
superior segmentation performance.

4.4 Model Evaluation

Multiple metrics were utilised to comprehensively evaluate model performance:

• Weighted Accuracy (Macro): Reflects overall predictive accuracy adjusted for
class frequency.

• Weighted F1 Score: Balances precision and recall, particularly crucial for han-
dling imbalanced datasets.
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4.5 AI Model Results

Our experimental results demonstrated that classification approaches outperformed seg-
mentation methods. This was not only in terms of accuracy but also in the shapes
that were predicted. While the 56×56 pixel scale (560×560m) yielded marginally better
statistical performance, we determined that the 25×25 pixel scale (250×250m) offered
a more appropriate resolution for policy applications and urban planning contexts. A
key finding was that incorporating regional context through H3 spatial indexing signif-
icantly enhanced predictive performance across all configurations. Models combining
embeddings with H3 contextual information provided the most balanced performance,
substantially outperforming other approaches on all metrics. Notably, when compar-
ing sampling strategies, we observed that H3 regional sampling showed slightly lower
performance metrics than random sampling, suggesting potential spatial leakage in the
random sampling approach that may artificially inflate performance metrics.

The results in the table below represent either pixel-level values or tile level values in
brackets.

ApproachScale Sampling Clas/seg
Regional
info

Global
Acc

Macro
Acc

F1
(macro)

C
(Clay)

1x1 random segmentation 0.73 0.31 0.30
(0.58)

C
(Satlas)

1x1 random segmentation 0.57 (0.41)

C
(Prithvi)

1x1 random segmentation 0.62 (0.42)

A
(embed-
dings)

25x25 random classification (0.73) (0.31) (0.30)

A
(embed-
dings)

25x25 random classification (0.81) (0.46) (0.53)

A
(embed-
dings)

25x25 random classificationlat/lon (0.89) (0.71) (0.78)

25x25 random lat/lon (0.91) (0.78) (0.83)
A
(embed-
dings)

25x25 H3 res 3
(55,743)

classificationH3 res 5
(lat/lon)

(0.58) (0.15) (0.15)

A
(embed-
dings)

25x25 H3 res 5
(2,125)

classificationH3 res 5
(lat/lon)

(0.65) (0.20) (0.21)
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ApproachScale Sampling Clas/seg
Regional
info

Global
Acc

Macro
Acc

F1
(macro)

A
(embed-
dings)

25x25 H3 res 6
(335)

classificationH3 res 5
(lat/lon)

(0.72) (0.29) (0.32)

A
(embed-
dings)

56x56 random classification 0.76
(0.66)

0.22
(0.13)

0.23

A
(embed-
dings)

56x56 random classificationH3 res 5
(cat)

0.87
(0.82)

0.42
(0.35)

0.45

A
(embed-
dings)

56x56 random classificationH3 res 5
(lat/lon)

0.87
(0.81)

0.39
(0.31)

0.42

A
(embed-
dings)

56x56 random regression
(ordinal)

H3 res 5
(lat/lon)

0.80
(0.80)

0.26
(0.26)

0.26

B
(Clay)

56x56 random classification 0.59
(0.68)

0.09 0.12

Based on these insights, our final model implements a Satlas embedding architecture
operating at the 25×25 pixel scale (250×250m resolution) with integrated H3 resolution 5
regional context, optimising the balance between spatial detail and classification accuracy
while ensuring robust generalisation to diverse urban environments.

4.6 Final Model

4.6.1 Addressing Class Imbalance

Significant class imbalance, particularly for urban classes, posed a considerable challenge
in our modelling. To mitigate this, we implemented a sliding-window augmentation strat-
egy for classes comprising less than 10% of the dataset (all classes except Countryside
agriculture and Wild countryside).

This sliding-window approach systematically shifted the sampling window horizontally
and vertically by increments of 50, 100, 150, and 200 meters, significantly increasing the
volume of available training data for underrepresented classes.
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Figure 4.1: Sliding Window Augmentation

The images below show class distributions before (left) and after (right) augmentation:

The following table summarises augmentation results, highlighting the substantial in-
crease in training samples for previously underrepresented classes:
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Class Before Augmentation After Augmentation
Accessible suburbia 15,054 129,620
Connected residential neighbourhoods 2,567 21,021
Countryside agriculture 1,367,999 1,367,999
Dense residential neighbourhoods 4,299 34,507
Dense urban neighbourhoods 3,636 31,657
Disconnected suburbia 2,644 20,113
Gridded residential quarters 1,518 12,849
Open sprawl 33,910 292,884
Urban buffer 381,283 381,283
Urbanity 2,495 21,929
Warehouse/Park land 21,282 195,105
Wild countryside 1,395,048 1,395,048

4.6.2 Classification Schemes

We used two versions of our dataset:

1. 12-class scheme: Maintained all original Spatial Signatures classes:

class_labels = {
'Accessible suburbia': 0,
'Connected residential neighbourhoods': 1,
'Countryside agriculture': 2,
'Dense residential neighbourhoods': 3,
'Dense urban neighbourhoods': 4,
'Disconnected suburbia': 5,
'Gridded residential quarters': 6,
'Open sprawl': 7,
'Urban buffer': 8,
'Urbanity': 9,
'Warehouse/Park land': 10,
'Wild countryside': 11

}

2. Simplified 7-class scheme: Created by re-clustering underlying data from the
Spatial Signatures Framework using K-means clustering (K=7):

class_labels_k7 = {
'Countryside agriculture': 0,
'Open sprawl': 1,
'Compact suburbia': 2,
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'Urban': 3,
'Urban buffer': 4,
'Warehouse/Park land': 5,
'Wild countryside': 6

}

4.6.3 Model Performance

The final XGBoost classifier was trained using the augmented dataset and evaluated
using three metrics: micro accuracy, macro accuracy (where every class has the same
weighting), and macro F1 score. We validated the model using 5-fold spatial cross-
validation at H3 resolution 6, ensuring an 80/20 training-testing split.

The table below summarises classifier performance for both classification schemes (7 and
12 classes) and two spatial context scenarios (with and without H3 resolution):

Classes (K) Spatial Context Accuracy Macro Accuracy Macro F1 Score
7 None 0.4924 0.3856 0.3389
7 H3 (res 5) 0.6959 0.5713 0.5221
12 None 0.4617 0.2666 0.2127
12 H3 (res 5) 0.6654 0.4328 0.3654

Including spatial context (H3 resolution) notably improved classification accuracy and
F1 scores, demonstrating the importance of spatial context in predicting urban fabric
classes. As anticipated, the model with fewer classes (7) performed better compared to
the one with 12 classes.

4.7 Temporal Analysis

We used the trained XGBoost classifier to make predictions across the years 2016 to 2021.
The overall overlap between the initial year (2016) and final year (2021) remained high
at 88%, confirming that Spatial Signatures classes remained relatively stable across the
study period. However, minor variations may indicate either genuine change or model
uncertainty.

Year-to-year class stability rates:

• 2016 → 2017: 88%
• 2017 → 2018: 88%
• 2018 → 2019: 86%
• 2019 → 2020: 86%
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• 2020 → 2021: 88%

4.7.1 Diversity Analysis (Shannon Index)

We assessed changes in urban fabric diversity using the Shannon Index across the studied
years. The results are summarised in the table below, indicating slight fluctuations, with
the most notable increase in diversity occurring in 2019:

Year Shannon Index
2016 1.868
2017 1.863
2018 1.868
2019 2.007
2020 1.873
2021 1.872

The marked increase in the Shannon Index in 2019 suggests an increase in class diversity
during that year, followed by a subsequent return to previous levels. This could indicate
some differences in the imagery caused by weather conditions or sensor characteristics
specific to 2019.

4.7.2 Spatial Patterns of Change

To make predictions across years, we used the trained model and fed in all GB tiles to
get predictions for the 12 classes.

Spatial analysis identified areas across England with frequent class transitions (map
below), particularly around major urban centres and suburban zones. These frequent
transitions may either represent genuine urban transformations or result from classifier
uncertainty, especially in ambiguous zones between visually similar Spatial Signatures
classes.
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Figure 4.2: Frequency Map

Class-specific analysis further highlighted particular Spatial Signatures types prone to
transitions. The figure below shows which classes experienced frequent transitions:
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Figure 4.3: Class Transitions

To better interpret these transitions, we calculated transition probabilities and organised
them into a structured confusion matrix. This matrix clearly shows the urban fabric
classes most likely to interchange over the studied period:
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Figure 4.4: ‘Reasonable’ confusion matrix

Lastly, we analysed the inverse-probability-based distances of urban fabric classes over
time. Shorter distances represent a higher likelihood of transitioning or changing classes
from year to year, whereas longer distances indicate greater stability:

Figure 4.5: Probability of change across classes

This analysis shows urban fabric classes such as Urbanity, Warehouse/Park land, Dense
urban neighbourhoods, and Connected residential neighbourhoods have shorter inverse dis-
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tances, indicating higher levels of dynamic change or redevelopment. Conversely, classes
such as Wild countryside and Countryside agriculture have longer distances, suggesting
greater temporal stability. Although these results align with expectations about urban
and rural dynamics, they may also reflect the classifier’s varying uncertainty across these
visually distinct environments.

4.8 Final model parameterisation

After all the experiments the best performing AI pipeline was using the SatlasPretrain
model (Bastani et al. 2023) operating at the 25×25 pixel scale (250×250m resolution) to
generate embeddings with integrated H3 resolution 5 regional context. Specifically, the
embedding model is a Vision Transformer (ViT) - Swin Transformer V2 - with a Feature
Pyramid Network (FPN) - [128, 256, 512, 1024] and out_channels=128 to generate
image embeddings. The H3 resulution 5 centroid coordinates in OSGB projection was
added as two extra features to the embeddings.

We used standard, pre-configured neural network setups without tuning the hyperparam-
eters, due to the limited amount of training data and class imbalances. As a result, we
did not include a validation split in these experiments. Similarly, the XGBoostClassifer
used the default hyperparameters from the xgboost Python package.

The model was trained and tested using 5-fold split using H3 resolution 6 ensuring
an 80/20 training-testing split for the whole of the UK. This is a similar split to the
morphometric pipeline, but at a higher resoultion, again due to the data limitations.

4.9 Discussion

4.10 Key Findings

The analysis demonstrates that urban fabric classifications exhibit distinct temporal and
spatial dynamics, reflecting varying levels of stability and diversity over time. Notably,
urban classes such as Dense urban neighbourhoods and Connected residential neighbour-
hoods displayed higher probabilities of transition, indicating active urban transformation.
Similarly, suburban classes, such as Accessible suburbia, Disconnected suburbia, and Ur-
ban buffer, also show a higher probability of change between these classes. Conversely, ru-
ral classes showed significant stability. It’s important to note that these observed changes
may be more related to classifier uncertainty than actual environmental changes.
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4.11 Lessons Learned

• Scale: Urban fabric classes, like spatial signatures, have fuzzy boundaries. Pixel-
level classifications provide the highest possible spatial resolution, which is bene-
ficial for detailed analysis. However, pixels often lack clear visual cues indicating
exact boundaries between classes, making pixel-level predictions challenging for
the model. Patch-level classification, although lower in spatial resolution depend-
ing on patch size, provided clearer visual context and resulted in better overall
performance.

• Embeddings vs. Fine-Tuned Foundation Model: Fine-tuning foundation
models involves significant complexity and requires careful design decisions. In our
case, the limited number of training examples was insufficient to achieve noticeable
improvements through fine-tuning. The effort required for fine-tuning did not
outweigh the simpler alternative of using off-the-shelf embeddings.

• Regional Trends: Including regional contextual information substantially im-
proved the classifier’s accuracy. Nonetheless, we found it essential that embed-
dings themselves already capture enough visual detail for accurate classification,
ensuring that predictions remain robust even without regional context (and simply
do not just rely on the spatial information to make predictions).

• Data Augmentation: The sliding window augmentation approach effectively ad-
dressed class imbalances, significantly improving model performance by increasing
representation of previously underrepresented urban fabric classes. This approach
could boost classifier performance by an additional 10-20% in terms of accuracy.

4.12 Potential Research Directions

There are several promising directions for future research:

• Handling Misclassifications: Misclassifications typically occur between visually
similar urban fabric classes, indicating inherent uncertainty in predictions. Incorpo-
rating prediction probabilities into a secondary model could help address this issue.
By explicitly using probability scores from the initial classification as input for a
refinement model — as previously shown by Fleischmann and Arribas-Bel1 — we
could better distinguish between ambiguous cases. This approach may “smooth”
predictions, reducing noise and improving overall classification accuracy. Future
work should explore how prediction confidence scores can be systematically utilised,
either by employing spatial smoothing algorithms or by applying secondary ma-
chine learning models trained specifically to correct uncertain predictions.

1Fleischmann and Arribas-Bel, 2024. Decoding (urban) form and function using spatially explicit deep
learning. Computers, Environment and Urban Systems, 31, p.105737.
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• Generalisability Testing: Evaluating the generalisability of this methodologi-
cal framework is crucial for its wider applicability. Future research should test
this modelling approach in different European regions, assessing whether the cho-
sen methods, including data preprocessing, augmentation strategies, spatial em-
beddings, and classifier architectures, perform consistently outside Great Britain.
This would involve exploring variations in urban form and regional urban planning
contexts across Europe. Understanding these factors will help identify potential ad-
justments needed to ensure reliable predictions when extending the model beyond
the original study area.
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5 Stakeholder engagement

We have presented the EuroFab project and related products at various events and ses-
sions. At Urbis 24, the project sparked interest in fulfilling unmet data requirements
for energy and climate applications, leading to a potential engagement with Covenant
of Mayors members via interviews or surveys. The World Urban Forum facilitated the
establishment of new stakeholder relationships, including productive sessions with the
SSVA (Construction Sector Development Agency of the Ministry of Environment, Lithua-
nia). Furthermore, we held numerous sessions with the Prague Institute of Planning and
Development (IPR) and 4ct.

We have gathered multiple insights from the sessions, related to these areas: - Data
Integration - Taxonomy Description and Naming - Comparative Urban Analysis: - Ex-
panding Data Coverage - Reducing Manual Effort in Land Use Analysis - Geographical
Scale of Results - Taxonomic Tree & Evaluation - Input data quality

A significant finding from the stakeholder engagements is the strong interest in inte-
grating the EuroFab data with land use, geodemographic, land value and other spatial
datasets. However, stakeholders differed in their technical ability to make such a merger
themselves. This led to discussions about multiple potential derived data products such
as classifications that incorporate both morphological and land use or other functional
information.

The stakeholders showed significant interest in the taxonomic tree, discussing both its
advantages and disadvantages. Potential use cases included, identifying the relationships
between different urban forms, as well as comparisons at different scales between regions
and cities. SSVA, in particular, conducted a detailed evaluation of the hierarchy within
the Lithuanian context and proposed several modifications so it fits better the local
context.

Significant time was spend discussing the issues of how to describe and name the taxo-
nomic tree and the clusters. Different applications required different names, and even
the same application (for example, for land use planning), but in different countries
required different names and descriptions. One discussed approach to this was to give
clusters and the taxonomy abstract names that focus only on the morphology. This
would later make it easier for users to adapt and refine the classification names and
descriptions according to their specific needs and application contexts.

A key application identified through discussions with 4ct, IPR, and SSVA is the use of
EuroFab data for comparative urban analysis - stakeholders expressed a strong interest
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in leveraging the data to compare cities, regions, and even cross-border areas. This capa-
bility is seen as valuable for guiding planning decisions, facilitating knowledge transfer
between local planning authorities and land developers, and understanding the factors
that shape urban development patterns. This emphases on comparisons also underscored
the need to expand the geographic coverage of the data.

We have already taken steps to address this requirement. Due to the new stakeholders
from Lithuania, we had to process the urban fabric of the whole country. This required
adjustments to the processing pipeline, which improved its scalability and performance
and currently, its easier to include new countries in the analysis. We also note that
even though Lithuania is excluded from the final modelling results with Microsoft and
Overture Maps data, it is present in the interactive web application.

There were also multiple discussions with stakeholders about the geographical scale of
the results. IPR expressed interest in both fine-grained units, such as morphotopes (local
contiguous areas of similar urban morphology), and coarser aggregations, such as the
hexagon-based aggregation featured in the web application. Conversely, 4ct and SSVA
indicated a need for building-level information, as well as access to the raw data.

Related discussions covered input data quality and additional morphological variables
to be included in the classification. The issues with the quality and inconsistencies of
building footprints was raised multiple times, as well as problems with the street network.
This was especially relevant for building height, which is a characteristic all stakeholders
expressed interest in. However, we also discussed the unavailability of this data and the
accuracy problems of existing building height data products.

Lastly, The Prague Institute of Planning and Development (IPR) highlighted the poten-
tial of EuroFab outputs to help with generating the official land use plan for the city.
Furthermore, they expressed interest in potentially integrating the EuroFab data into
their urban analytics products for Prague.

5.1 Direct stakeholder impact on the project

The most significant impact of stakeholder engagement on the project had to do with the
format of the final data product and its presentation method. We provided stakeholders
with multiple data types to evaluate and determine the most useful format for their
specific analytical needs and usage patterns. Throughout these engagement sessions,
the interactive website was developed and proved to be the most preferred format that
was subsequently used for all consultations. It showcased both the hierarchical structure
and the possible formats and scales of the results. Multiple data formats were developed
and assessed, including representations such as a regular grid, enclosed tessellation cells,
or detailed building footprints. Each of these formats was identified by stakeholders
as valuable for different applications; for instance, a gridded format might be optimal
for large-area environmental analysis, whereas building-level data is crucial for detailed

33



5 Stakeholder engagement

urban planning or infrastructure management. Lastly, these results helped in the naming
and interpretation of the clusters.

Secondly, the inclusion of the Construction Sector Development Agency of the Ministry
of Environment, Lithuania (SSVA) as a key stakeholder engagement led to the expansion
of the pilot’s scope to include the country in certain parts of the research. This experience
also helped identify the areas that will need to be updated for the comprehensive pan-
European scale planned for the future operational product and how to streamline the
process of onboarding new interested stakeholders.

Thirdly, the decision to extend the morphometric pipeline to incorporate Overture Maps
data was, in part, guided by expressed stakeholder interest, given that Overture Maps
represents a new and increasingly popular open-source repository of global building
information. Overture Maps generally offer greater detail, wider geographical coverage,
and more frequent updates compared to the satellite-derived Microsoft building footprint
data. However, a key characteristic of Overture Maps is its heterogeneity, as its data
is aggregated from diverse sources without much standardisation. Our work provides a
critical case study evaluating the quality of the data available through Overture Maps
and exploring its practical utility, for instance, in applications like comparative urban
morphology analysis or assessing settlement patterns.

Lastly, stakeholder engagement was one of the key factors influencing the strategic di-
rection of the follow-up study. On multiple occasions during our interactions, stake-
holders expressed a strong and clear interest in future collaborations, opportunities for
co-development of tailored solutions, and the creation of derived analytical products.
For example, linking the project’s morphological results with socio-economic datasets or
aggregating the results at custom scales to facilitate city or regional comparisons based
on quantitative measures of urban form.
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6 Conclusion

The main finding of the modelling work is that it is possible to use alternative, non-
cadastre level data for the accurate prediction of urban fabric over time. These pre-
dictions are more detailed than existing large-scale urban fabric classifications and the
predicted classes are tailored to urban planners, researchers, policymakers and develop-
ment companies.

One of the main use cases identified by stakeholders was the ability to compare differ-
ent areas or identify similar cities or regions across countries. The models support this
by producing fine-grained, spatially consistent urban classifications that are tailored to
comparative analysis at a highly local, regional or continental scale. In addition, the
models can capture urban transitions over time, adding a valuable temporal dimension
to the analysis. This enables comparisons not only across space, but also through time -
making it possible to examine how urban areas evolve, diverge, or converge. The tempo-
ral insights unlocked by AI modelling enhance the overall utility of urban classifications
for planners, researchers, and policymakers.

A key insight from the modelling work is that increasing the amount of training data
improves predictive performance - particularly in the presence of class imbalance, where
underrepresented classes can otherwise lead to biased outcomes. This makes data sam-
pling strategies especially important for ensuring balanced model learning across diverse
urban forms. The morphometric classification, based on the Overture model, performs
well at the building level, and can be deployed at scale to generate detailed urban classes
across Europe. These outputs can serve as a rich source of training data for the AI-based
model, helping to fill gaps in underrepresented regions or classes. By leveraging mor-
phometric results across multiple countries, the AI model’s predictive accuracy can be
further improved - leading to more robust and precise time-series predictions of urban
change.

The modelling work also highlights the importance of spatially explicit machine learning
and data science. In both cases, incorporating spatial information consistently improves
model performance. Additionally, spatially explicit train/test splits provide a more real-
istic assessment of generalisation, ensuring that models are evaluated under conditions
that reflect real-world deployment across unseen geographies.

Lastly, the interest and various feature requests from the stakeholders confirm the need
for a detailed urban classification at a granular level. Such a dataset can act as the
foundation for multiple derived data products adapted to particular use cases. Examples
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included comparisons between countries at different scales - neighbourhoods, cities and
regions; access to the building-level morphological data of the taxonomy; and the ability
to figure out where newly-designed areas would fall within the taxonomy before they are
built.

6.1 Limitations

While the presented methods demonstrate strong potential for scalable urban classifica-
tion, several limitations should be acknowledged:

• Dependence on ground truth and input data quality While alternative datasets
such as Overture or satellite-derived imagery allow broad geographic coverage,
they cannot fully substitute for cadastral or on-the-ground verification data. The
quality and consistency of input data - particularly building footprints - remain
critical to model accuracy, especially at higher classification detail. Differences
in data completeness or geometric fidelity can significantly impact performance
across regions and classes.

• Uncertainty in temporal and spatial predictions Evaluating the accuracy of pre-
dictions over time is inherently challenging due to the absence of ground truth
data for intermediate years. Although the classifier identifies plausible transitions,
particularly in suburban areas, it is difficult to distinguish genuine urban change
from model uncertainty or noise introduced by seasonal imagery variation, cloud
cover, or sensor differences.

• Transferability across geographic and morphological contexts The models demon-
strate strong generalisation within Great Britain and across several Central Euro-
pean countries. However, their performance varies in regions with distinct urban
morphologies, socio-economic conditions, or planning traditions not well repre-
sented in the training data. Expanding the training set to include more diverse
examples of urban fabric will likely improve transferability and robustness across
broader European or global contexts.

36



7 Future work

Ultimately, EuroFab seeks to pave the road for a world where stakeholders, from local
authorities to supranational organisations, are able to track and monitor the patterns of
European urban development across time, in detail directly relevant for planning. The
pilot study in Central Europe and the UK consisted of three related parts - a machine
learning morphometric pipeline, an AI vision model, and a stakeholder engagement com-
ponent. The current pilot study demonstrated the viability of using alternative data
sources to produce multiscale descriptions of the built environment, based on analysis
of individual buildings, street segments and their interactions. Furthermore, the stake-
holder engagement part highlighted the multiple applications which stakeholders see for
such a dataset.

The overarching strategy for scaling and productionalising the EuroFab system involves
three principal phases. First, using the morphometric pipeline to generate detailed
urban classification at a pan-European scale. Second, training the AI vision model on
the outputs from step one, to fill data gaps and to produce a temporal classification
based on historical satellite data. Third, producing the refined classification results
and expanding stakeholder engagement activities. This will be crucial for driving user
adoption and facilitating the derivation of secondary indicators and specialised datasets
tailored to specific applications, such as regional development analysis or climate change
impact assessments.

This new phase will also address the limitations of the pilot study. The three limitations
presented above primarily have to do with the limited geographic extent of the study
area. Although it covers multiple countries and tens of millions of data points, the pilot
study demonstrated the benefits of larger data coverage for both models. We propose
to address the three challenges - dependence on ground truth and input data quality,
uncertainty in temporal and spatial predictions, and transferability across geographic
and morphological contexts - through updates and scaling up of the pipelines developed
in this pilot study.

7.1 Morphometric pipeline

The results from the pilot study demonstrated the potential to deliver pan-European clas-
sification of urban fabric as a combination of morphological processing and predictive
modelling. Specifically, that it is possible to fill the gaps in openly available cadastral
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data with alternative data sources, namely Overture Maps and Microsoft Building foot-
prints. The resulting classification can be used by stakeholders on its own, but it will
also be the training data for the expanded temporal AI models. The following changes
will be required to do this:

• Alignment with Cadastral Classification: Maintaining continuous alignment
with the evolving cadastral classification is crucial to keeping the morphometric
pipeline up-to-data. There are no major challenges expected for this work, however
it will require continuous updates of the entire pipeline, including models and data
processing. Nevertheless, it is expected that each update of the ground truth data
will improve the performance of the models.

• Heterogenous data sources: The scope of the pilot study was already extended
so that the models and morphological processing pipeline can handle heterogeneous
data. The results suggest that better quality data from heterogeneous sources,
specifically Overture Maps data, leads to more accurate predictions. However,
the underlying building data from new European regions can have previously un-
seen issues in the pilot study area. These could include issues such as topological
inconsistencies (e.g., overlapping building polygons), incomplete coverage, or dis-
crepancies in the street network data used for contextual analysis. While these
challenges are considered solvable, they will likely increase the complexity and
volume of the required data pre-processing work. Extending and improving the
Overture Maps data processing pipeline is a good starting point for all of these
and other data integration tasks.

• Data Gaps: In regions where there are no building footprints available at all,
the vision model can be used directly to fill in the gaps, since Sentinel 2 has
full coverage of Europe. However, such a region could potentially represent an
unobserved urban class, and therefore needs to be analysed in more detail.

• Unknown urban fabric types: The likelihood of unseen urban classes lessens
as the geographical scope of the ground truth cadastral classification grows. The
current classification covers Germany, Poland, Lithuania, Slovakia, Czechia and
Austria. There is cadastral data available for other European Countries such as
Spain, Belgium, France and the Netherlands. It is expected that these will be
included in subsequent cadastral classifications and therefore increase the types of
urban fabric covered. This prospect further increases the importance of continu-
ously aligning the existing morphometric pipeline with the cadastral ground truth,
as well as with the latest advancements in open-source geospatial software.

• Model Tuning and Optimisation: The current morphometric models are Hist-
GradientBoostingClassifier with unlimited depth and number of nodes, trained on
hundreds of thousands of examples per class. However, this scheme will need to
change as the size of the datasets increases, or alternatively multiple models will
need to be trained and tested. The detailed spatial testing schemes implemented
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in the pilot study can guide the development of the new models, where the main
anticipated challenges will be hyper-parameter tuning, addressing class imbalances
and accurate subletting of the training data. The data availability and data pre-
processing work will also have a large impact on the model tuning and training. It
is possible that only specific types regions lack cadastral data, or are not covered
by the ground truth classification and therefore will require most of the modelling
focus.

7.2 AI vision model

The core of EuroFab’s current Earth Observation analytical capability is the Spatial
Signatures Pipeline, detailed in the eurofab-project/eo GitHub repository. This pipeline
is engineered to generate spatial signature predictions using satellite imagery as its pri-
mary input. First, it integrates computer vision models to create feature embeddings
from Sentinel 2 imagery. These embeddings are subsequently processed by an XGBoost
model, which performs the classification of individual image chips -groups of pixels - into
predefined urban fabric classes. The following aspects of this baseline processing chain
needs to be adapted and scaled:

• Leveraging Copernicus Services: The Copernicus programme, with its com-
mitment to free, full, and open data access, will be the cornerstone for sourcing
satellite imagery. Primarily, data from the Sentinel-2 (multispectral optical) mis-
sion will be used to derive consistent historic coverage of the urban fabric in the
entire European continent. These data will be the core input for the raster-based
analyses performed by the EuroFab pipeline and will enable the temporal classifi-
cation and change detection of urban fabric.

• Leveraging the new morphometric classification results as ground truth:
It is expected that replacing the ground truth classes from spatial signatures to
the new morphometric results will not lead to significant changes in the pipeline.
Although the spatial signatures capture functional information, almost all morpho-
metric characters used in deriving the new classification are already used in the
spatial signatures derivation. Therefore, the current AI vision model pipeline is al-
ready processing urban form information. There is one significant change that will
need to be accounted for. The new ground truth classification focuses exclusively
on areas that have buildings, therefore large expanses of non-built up area such
as fields and forests are excluded by definition. This will actually reduce process-
ing times and help with class imbalances, however some changes in the processing
pipeline will be necessary.

• Generalisability Testing: The performance of the vision model will be tested
using the same robust generalisability testing framework used in the pilot study’s
morphological pipeline. This was not possible for the pilot AI pipeline due to the
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limited extent of the available data. However, with the expansion of the study area
data more complex testing scenarios become viable. Furthermore, the generalisabil-
ity task becomes easier as the scale of the morphometric pipeline used to generate
the training data increases to cover the whole of Europe. Rather than having to
predict urban form in multiple entirely unseen contexts, the vision model will have
to do in-fill predictions - —classifying urban fabric for regions where contextual
information from surrounding, already classified areas is available, thus benefiting
from a richer, more representative training dataset.

• Evaluation of urban predictions across time Similarly, the larger quantity of
data, as well as the new testing frameworks will enable better model performance
and more certainty in the temporal classification results. Furthermore, the ex-
panded stakeholder engagement and derivation of secondary datasets will provide
valuable real-world validation, and increased confidence in the results.

• Methodological processing The existing AI pipeline architecture relies on lo-
calised information - processing image pixels and chips with limited local context
- to generate embeddings and subsequent predictions. Therefore, it is anticipated
that memory and computing requirements will scale in a broadly linear fashion
with the increase in data volume, without necessitating fundamental changes to
the core methodology. However, it is expected that significantly more resources
will be required for preprocessing the data and for training generating the embed-
dings from the satellite images for the whole of Europe. In order to do these steps
in a reasonable timeframe it is expected that training and inference will require a
small cluster of high-end GPUs, with the inference ran on a yearly basis.

7.3 Stakeholder engagement

The stakeholder work in the pilot study confirmed the need for a detailed urban classi-
fication at a granular level. The engagement also resulted in multiple feature requests
for secondary indicators, specific functionality and reports. The new pan-European de-
tailed urban classification has the potential to serve as a foundational dataset for a mul-
titude of derived data products, each adapted to particular use cases and stakeholder
requirements. Examples of requested applications included: comparative analyses be-
tween countries at various spatial scales (neighbourhoods, cities, regions); direct access
to building-level morphological data for micro-scale studies; and predictive classification
capabilities to assess how newly designed or planned urban areas might be categorised
before construction. Furthermore, stakeholders expressed strong interest in combining
the EuroFab classification with other complementary datasets, such as socio-economic
data, environmental hazard maps, or transport network information.

The expanded geographical scale and enhanced detail of the new pan-European results
will enable us to continue and enhance the stakeholder work in several ways.
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• Workshops and conference work: Experience from the pilot phase demon-
strated that workshops and conference presentations are highly effective mech-
anisms for fostering collaborations and gathering valuable insights. The pan-
European scale of the new product will increase the number of relevant and inter-
ested stakeholders. Therefore, sustained engagement through targeted workshops
and active participation in key European conferences is expected to continue de-
livering substantial value to the project as a whole.

• Engagement with Specific Cities and Regions: Stakeholders consistently ex-
pressed interest in their local areas or countries, as well as larger pan-European
data. Even the pilot study extent of five Central European countries and the UK
proved limiting. For example, the inclusion of SSVA (Construction Sector Devel-
opment Agency of the Ministry of Environment, Lithuania) as one of the key stake-
holder engagements, necessitated the inclusion of Lithuania in some parts of the
pilot’s research. The comprehensive pan-European scale of the operational product
will significantly streamline the process of onboarding new interested stakeholders,
as their specific geographical areas of interest will inherently be covered.

• Collaborations & co-development: The focus of the current stakeholder work
was on establishing relationships and gathering feedback. Extended collaboration
on specific applications and data products was not possible due to the short dura-
tion of the pilot. The expanded scope and duration of the pan-European classifica-
tion project will lead to stakeholder engagement beyond simple feedback collection.
This can involve establishing formal partnerships where stakeholders actively con-
tribute resources – such as local datasets for training/validation, domain expertise,
or personnel for joint validation campaigns – and, in return, share in the bene-
fits and responsibilities of the new data products. Such collaborative ventures are
designed to deeply embed the EuroFab service and its outputs into the stakehold-
ers’ existing operational workflows and critical decision-making processes, thereby
maximising its real-world impact.

• Developing derived products: For specific, strategically important use cases
(e.g., monitoring progress towards Sustainable Development Goal 11 on sustain-
able cities), the project can extend its stakeholder engagement to actively guide
the co-development of tailored derived products. This work will also result in
detailed examples and documentation of how to use the foundational space-time
urban classification product for the development of derived indicators in different
policy areas. Some desirable indicators that came up during the development work
were combining the classification with land use data and geodemographic factors,
generating summaries of the morphometric character of cities, access to the full
taxonomy, as well as raw morphometric characters data at the building level.

• Supporting Third-Party Development of Derived Products: The pilot
study also revealed interest from commercial entities and research groups in devel-
oping their own derived products for specific niche applications. These were local
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consultancies and private companies operating in sectors such as urban planning,
real estate analytics, and environmental management. A framework for ongoing
engagement and technical support can be established to facilitate and encourage
these third-party developments, potentially through API access or developer toolk-
its.
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8.1 Software

8.1.1 Morphometrics

8.1.1.1 Interactive web application

We developed an interactive web app that displays the entire ground truth morphometric
classification for Central Europe - HiMoC. The web app makes possible the sharing of
the Central European data with an even wider audience, than the original specified
stakeholders, regardless of their technical expertise. Furthermore, it allowed stakeholders
to visually explore the geospatial data, zoom in and out, pan across areas, and overlay
different layers. It was the focus of multiple stakeholder consultations and enabled them
to see final results, propose features, highlight mistakes. Furthermore, it allowed them
to specify what format at what scale the final results would be most useful for them.

8.1.1.2 Morphometric characterisation pipeline for Microsoft Building footprints

The entire morphometric characterisation pipeline for the processing of Microsoft Build-
ing Footprints, including reproducible notebooks and an environment is open-sourced
and available on the EuroFab GitHub.

8.1.1.3 Morphometric characterisation pipeline for Overture Maps Building
footprints

The above reproducible pipeline was further adapted to process Overture Maps data and
is also available at the EuroFab GitHub.

8.1.2 EO

All EO analyses presented are supported by openly accessible software hosted on GitHub.
The AI prediction pipeline, including preprocessing, embedding generation, and predic-
tion of spatial signatures, is fully documented and accessible at EO repository.
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8.1.3 Software: AI Method for Urban Fabric classification and
morphometric characterisation

All the work supporting this analysis can be found on GitHub. The main prediction
pipeline, which includes data preprocessing, embedding creation, and spatial signature
prediction, can be used as follows:

# Run the pipeline
pipeline.spatial_sig_prediction(

## Vector file (geojson or parquet) of analysis area (grid).
geo_path= "london_25_25_grid_clipped.geojson",
## Vrt file of the satellite composite
vrt_file= "mosaic_cube/vrt_allbands/2017_combined.vrt",
## Model weights for XGBoost classifier
xgb_weights = "k12_h5_slided_gb_xgb_model.bin",
## Model weights for embedding model (Satlas)
model_weights = "satlas/weights/satlas-model-v1-lowres.pth",
## Output file with predictions, prediction probabilities and geometries
output_path= "predictions/test_london_h6.parquet",
## h3 resolution to be added to analysis (spatial context)
h3_resolution=5,

)

More details and documentation on how to run the pipeline can be found in the example
on the EuroFab project EO repository.

8.2 Example datasets

8.2.1 Morphometric model

The final morphometric model is around 40GB and takes around 10 hours to train. The
full script and notebooks, including a reproducible environment is available at the project
GitHub. A non-interactive version of the notebooks used in the pipeline is available on
the EuroFab Project Website .

8.2.2 AI model

The final data cube including predictions for the years 2016 to 2021 for 7 and 12 classes
can be found on the project website.
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Figure 8.1: Example Level 4 predictions for the areas around Vienna (Austria), Munich
(Germany), Wroclaw (Poland) and Brno (Czechia)
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8.2.3 Example datasets generated during Verification Exercises

Here are some example visualisations showing London and Liverpool from the dataset:

8.2.3.1 London

Figure 8.2: London, 7 classes

46



8 Open Science

Figure 8.3: London, 12 classes
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8.2.3.2 Liverpool

Figure 8.4: Liverpool, 7 classes
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Figure 8.5: Liverpool, 12 classes
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9 Project documentation

Complete project documentation, including the presentation slides, code, data, and all
the technical notes is available from the project homepage eurofab.org.

Individual sites linked from the homepage contain:

• Technical notes - eurofab.org/technical-notes/
• Presentations - eurofab.org/talks/
• Morphometric work stream - eurofab.org/morphometrics/
• Earth Observation work stream - eurofab.org/eo/

Each of the sites is publicly hosted on GitHub and built into HTML using GitHub
Actions.

• Homepage - github.com/eurofab-project/eurofab-project.github.io
• Technical notes - github.com/eurofab-project/technical-notes/
• Presentations - github.com/eurofab-project/talks/
• Morphometric work stream - github.com/eurofab-project/morphometrics/
• Earth Observation work stream - github.com/eurofab-project/eo/
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