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1 Executive summary

This technical note presents the results from the modelling work specified in technical
note “Technical Note D2 - Algorithm Design and Theoretical Basis Description” for
both the morphometric and AI models. The first section “Morphometric classification”
focuses on the morphometric prediction pipeline, its results accuracies and examples and
introduces two extensions to the experiment design - an additional dataset and two new
models that are evaluated. Similarly, the second section “Test and Verification Results:
AI Model” describes the extensions and changes from the design specification and the
results of the space-time modelling. This note ends with a conclusion section that brings
together the two sets of results and discusses the limitations of the project. In summary,
we are able to achieve high accuracy at multiple resolutions - at the building level for the
morphometric model, and at the 250 metre grid cell resolution for the AI model. And
that these results show that it is possible to use alternative data sources to characterize
urban fort at scale, while preserving detail that is currently not captured by other large
urban descriptors.
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2 Morphometric classification

This section presents the results of the morphometric analysis described in “Technical
Note 2 - Algorithm Design”.

Table 2.1: Taxonometric tree
Level 1 Level 2 Level 3 Level 4
Traditional
Street Network

Central Urban
Developments

Central Urban
Developments

Dense Connected
Developments
Large Interconnected
Blocks

Traditional Urban
Developments

Dense Urban
Developments

Dense Standalone
Buildings
Compact
Development

Street-aligned
Developments

Aligned Winding
Streets
Cul-de-Sac Layout

Utilitarian Street
Network

Utalitarian street
network

Large Scale
Developments

Large Utilitarian
Development
Extensive
Wide-Spaced
Developments

Sparse Road
Network
Developments

Sparse Open Layout

Sparse Road-Linked
Development

Linear & Rural
Development

Linear Road
Network
Developments

Dispersed Linear
Development

Linear Development
Sparse Rural
Development

Sparse Rural
Development

The taxonomy of ground truth classes is presented in Table 2.1 and all subsequent
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2 Morphometric classification

analysis focuses on Levels 3 and 4. There is an interactive map of the taxonomy available
at https://uscuni.org/himoc/ .

We have made two changes to the methodoly presented in “Technical Note 2 - Algorithm
Design”, which are outside of the original scope of the project.

Figure 2.1: Train/test data splits for different models.

First, we train two additional models per ground truth hierarchical (taxonometric) level
- a global random model and a global spatially explicit model. This is done to highlight
the effects of spatial lag in model training and testing, as well as the ability of the models
to generalise from one context to another. Figure 2.1 shows the new train / test splits.

Figure 2.2: Comparison between data sources.

The second change is that we repeat all experiments with a new data set based on
Overture Data. The experiment is done to demonstrate that the morphological pipeline
can handle more detailed, but heterogenous data, which may lead to better predictions.
Furthermore, the Overture data is easily accessable for numerous regions across the world
and significantly increases our pipeline’s generalisibility. Figure 2.2 shows a comparison
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2 Morphometric classification

between the datasets.

2.1 Results

Since the different test cases are derived from different underlying data, the results are
interpreted with that in mind. The test data distribution and source in the MS models is
different than the test data in Overture models - less volumnous, much less detailed and
overall different in character. Table Table 2.2 shows the differences in distribution per
Level 4 cluster with the table values reporting the thousands of instances of a particular
class. The distribution will be similar for level 3 clusters, as they are aggregates of Level
4.

The differences in Large Interconnected Blocks and Dense Connected Developments be-
tween Table 2.2b and Table 2.2a highlight that there are a lot less instances of buildings
in dense central urban areas, since the extraction method in the MS case groups many of
them together or completely discards them. However, in all cases, apart from Germany,
as a percentage of the total test cases, these classes are low and therefore even high
improvements in predicting these specific classes affect the overall reported accuracy
relatively little. The weighted macro F1 score reported in the results in subsequent sec-
tions somewhat addresses the issue, but it accounts better for poor performance, rather
than highlighting improvements. If the models perform poorly on a class that appears
few times in the test data, then the weighted F1 score weights its specific score less
than other classes that appear more frequently. The macro F1 score weights the classes
equally, so better performance in a class that does not appear often increases the overall
score relatively more. However, poorer performance for another class due to the test case
distribution or problems with the Microsoft Buildings extraction algorithm counters this.
For these reasons we extend our analysis to the individual classes and do not just look
at the aggregate F1 scores.

Nevertheless, the attached target labels come from the same source for both types of
models and reflects a ground truth independent of these data issues. The detailed class
by class F1 scores highlight what is possible to detect with a specific datasets. Therefore,
a high score means that a correct classification is more likely given all of the issues with
the underlying data.

2.1.1 Level 3

2.1.1.1 Aggregate scores

Table 2.3 shows the aggregate F1 scores for the level 3 models trained on the Microsoft
Building footprint and Overture Maps building footprints data. The Random, column
shows the F1 scores for the model tested on randomly selected stratified data; Spatial -
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2 Morphometric classification

Table 2.2: Distribution of test classes across the different models. The reported values
are in the thousands.

(a) Microsoft building footprints
Random Spatial SK PL DE AT CZ

Aligned Winding Streets 1,308 1,312 474 406 5,219 245 195
Compact Development 1,067 1,083 160 75 5,041 33 23
Cul-de-Sac Layout 1,023 1,027 358 400 3,798 344 212
Dense Connected Developments 735 750 92 268 2,971 138 207
Dense Standalone Buildings 818 785 273 1,224 1,899 358 338
Dispersed Linear Development 136 133 36 613 31 0 2
Extensive Wide-Spaced Developments 113 104 26 329 130 20 61
Large Interconnected Blocks 36 33 3 8 138 21 11
Large Utilitarian Development 133 131 11 134 429 43 46
Linear Development 391 396 139 1,526 254 11 27
Sparse Open Layout 1,626 1,621 59 3,744 1,486 1,319 1,521
Sparse Road-Linked Development 1,095 1,065 428 1,697 3,005 177 169
Sparse Rural Development 562 540 30 2,483 65 132 101
Total 9,049 8,987 2,095 12,913 24,473 2,846 2,919

(b) Overture building footprints
Random Spatial SK PL DE AT CZ

Aligned Winding Streets 1,906 1,911 602 593 7,681 334 320
Compact Development 1,632 1,646 201 127 7,708 75 48
Cul-de-Sac Layout 1,354 1,362 446 484 5,152 429 260
Dense Connected Developments 1,850 1,843 157 662 7,494 262 676
Dense Standalone Buildings 1,062 1,073 324 1,540 2,524 465 454
Dispersed Linear Development 163 167 40 740 35 0 3
Extensive Wide-Spaced Developments 175 186 63 468 215 35 94
Large Interconnected Blocks 216 218 11 45 872 82 70
Large Utilitarian Development 184 178 15 163 632 55 57
Linear Development 468 464 173 1,797 320 11 41
Sparse Open Layout 1,924 1,901 65 4,353 1,927 1,498 1,777
Sparse Road-Linked Development 1,387 1,377 531 2,045 3,921 226 213
Sparse Rural Development 639 643 42 2,811 82 150 108
Total 12,966 12,974 2,675 15,832 38,570 3,627 4,127
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2 Morphometric classification

Table 2.3: Overall F1 scores at level 3

(a) Microsoft building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.74 0.66 0.59 0.54 0.60 0.59 0.63 0.56
Micro F1 0.74 0.65 0.57 0.53 0.61 0.58 0.62 0.53
Macro F1 0.73 0.63 0.48 0.45 0.54 0.47 0.49 0.45

(b) Overture building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.74 0.66 0.59 0.51 0.61 0.62 0.65 0.59
Micro F1 0.74 0.66 0.58 0.50 0.61 0.61 0.63 0.56
Macro F1 0.74 0.64 0.50 0.46 0.57 0.49 0.53 0.47

on the spatially aware split; OoS - stands for “Out of Sample” and is the average of the
models, tested on each individual country and trained on the rest; the other columns
are the specific F1 scores for each country, that make up the OoS. There are three main
patterns present in the reported results.

First, overall the aggregate scores between the models trained on the two datasets are
almost equal. with the Overture Maps models being very slightly higher. This suggests
that at this level of disaggregation of urban form, detailed characteristics of building
footprints and their interactions with each other and the street network matter less. For
example, the Overture data has more accurate information of building corners, adjacency,
orientation and others but that does not significantly improve the overall F1 scores.

Second, more complex and reflective of the underlying phenomena testing splits result in
more realistic model evaluations for both sub-tables. The Random split has the highest
score, the spatial split is always lower and the OoS average lower still. OoS is the
closest score to a realistic real-world application of the model - using it to predict unseen
urban fabric types. The fact that the Spatial score is closer to it, shows that randomly
splitting your modelling data leads to spatial leakage and spatially aware-splits result
in more realistic evaluations. Nevertheless, the Out of Sample score is lower still, which
suggests that even testing the model accuracy on spatially split data overestimates model
performance.

Third, even at this high level of aggregation urban form shows signs of heterogeneity. The
F1 scores for the individual countries vary both Overture and Microsoft trained models,
but especially in Table 2.3a. The scores for Slovakia are especially lower suggesting that
it represents a more distinct type of morphology, whereas the scores for Austria are the
highest suggesting that it is more similar on average to Central Europe as a whole.
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2 Morphometric classification

Table 2.4: Individual F1 scores for level 3 clusters

(a) Microsoft building footprints
Random Spatial OoS SK PL DE AT CZ

Central Urban Developments 0.62 0.56 0.46 0.37 0.45 0.51 0.50 0.47
Dense Urban Developments 0.73 0.67 0.65 0.64 0.70 0.64 0.66 0.62
Large Scale Developments 0.54 0.46 0.42 0.34 0.55 0.37 0.39 0.42
Linear Road Network Developments 0.87 0.67 0.36 0.45 0.59 0.36 0.20 0.20
Sparse Road Network Developments 0.79 0.71 0.64 0.52 0.70 0.61 0.73 0.64
Sparse Rural Development 0.87 0.71 0.38 0.31 0.46 0.18 0.47 0.47
Street-aligned Developments 0.70 0.63 0.46 0.56 0.33 0.59 0.49 0.32

(b) Overture building footprints
Random Spatial OoS SK PL DE AT CZ

Central Urban Developments 0.74 0.69 0.59 0.41 0.62 0.67 0.65 0.62
Dense Urban Developments 0.72 0.67 0.65 0.64 0.69 0.64 0.66 0.63
Large Scale Developments 0.54 0.45 0.40 0.36 0.55 0.36 0.38 0.34
Linear Road Network Developments 0.86 0.66 0.38 0.46 0.60 0.36 0.26 0.23
Sparse Road Network Developments 0.78 0.70 0.64 0.49 0.69 0.60 0.73 0.67
Sparse Rural Development 0.85 0.71 0.39 0.36 0.47 0.16 0.51 0.47
Street-aligned Developments 0.69 0.62 0.46 0.49 0.35 0.60 0.51 0.35

2.1.1.2 Class scores

Table 2.4 shows the F1 scores broken down by prediction class for the level 3 models.
The sub-tables and columns have the same interpretation as Table 2.3.

The differences in F1 scores across classes shows that some types of urban form is easier
to predict that others. Dense Urban Developments has the highest score, whereas
Sparse Rural Development the lowest.

The patterns in the individual classes between sub-tables Table 2.4a and Table 2.4b are
mostly identical to patterns in the aggregated results. The scores for individual classes
are similar, with the overture data performing very slightly better. The exception is the
Central Urban Developments class, which is reflective of the higher quality in the
Overture dataset. The higher prediction accuracy for this cluster does not significantly
impact the overall F1 scores in Table 2.3b, since it is relatively sparse compared to the
rest of the classes. Furthermore, the same patterns in f1 scores hold across the train / test
schemes : Random is the highest; Spatial is lower, OoS lowest. Lastly, the heterogeneity
of urban form between countries and across detailed classes is even more pronounced
, as evidenced by the even larger differences in F1 scores between the country specific
models countries.
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2 Morphometric classification

Table 2.5: Overall F1 scores at Level 4

(a) Microsoft building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.59 0.52 0.38 0.38 0.42 0.36 0.44 0.29
Micro F1 0.59 0.52 0.37 0.38 0.42 0.37 0.40 0.28
Macro F1 0.59 0.49 0.30 0.30 0.35 0.31 0.30 0.26

(b) Overture building footprints

Random Spatial OoS SK PL DE AT CZ
Weighted F1 0.70 0.55 0.41 0.35 0.43 0.41 0.49 0.39
Micro F1 0.70 0.54 0.40 0.34 0.43 0.41 0.46 0.36
Macro F1 0.71 0.54 0.34 0.30 0.38 0.35 0.36 0.32

2.1.2 Level 4

2.1.2.1 Aggregate scores

Table 2.5 shows the overall F1 scores for the Level 4 prediction models.

First, overall the scores in Table 2.5 are lower than the scores in Table 2.3 across all
models. This shows that the prediction task becomes more difficult as we move down
the ground truth taxonomy.

Second, Table 2.5b mostly has higher values than Table 2.5a across all models, suggesting
that as the detail of the target clusters increases, so does the importance of the building
footprints quality.

Third, heterogeneity of urban form is more prominent as evidenced by the relatively
larger differences in f1 scores between the country specific models.

Fourth, the same pattern of spatial leakage is present as in Table 2.3. As the complexity
of the spatial splitting schemes increase to match the underlying phenomena, the f1
scores decrease.

2.1.2.2 Class scores

Table 2.6 shows the breakdown of f1 scores across Level 4 individual clusters and models.
The same patterns with regard to spatial leakage and urban heterogeneity hold as in
Table 2.5, Table 2.3 and Table 2.3. However, there is a more pronounced difference in
the data sources.
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2 Morphometric classification

Table 2.6: Individual F1 scores for level 4 clusters

(a) Microsoft building footprints
Random Spatial OoS SK PL DE AT CZ

Aligned Winding Streets 0.51 0.45 0.28 0.35 0.21 0.36 0.28 0.18
Compact Development 0.59 0.55 0.13 0.15 0.09 0.24 0.09 0.08
Cul-de-Sac Layout 0.57 0.52 0.43 0.52 0.31 0.52 0.47 0.32
Dense Connected Developments 0.50 0.46 0.33 0.29 0.29 0.45 0.33 0.29
Dense Standalone Buildings 0.63 0.56 0.54 0.53 0.65 0.38 0.55 0.57
Dispersed Linear Development 0.91 0.64 0.19 0.17 0.34 0.18 0.06 0.18
Extensive Wide-Spaced Developments 0.41 0.31 0.25 0.25 0.46 0.13 0.19 0.25
Large Interconnected Blocks 0.36 0.28 0.24 0.22 0.17 0.37 0.30 0.15
Large Utilitarian Development 0.49 0.40 0.32 0.23 0.34 0.36 0.34 0.34
Linear Development 0.73 0.50 0.28 0.37 0.43 0.29 0.13 0.16
Sparse Open Layout 0.62 0.56 0.31 0.14 0.36 0.32 0.50 0.24
Sparse Road-Linked Development 0.57 0.46 0.27 0.40 0.32 0.29 0.17 0.19
Sparse Rural Development 0.79 0.69 0.39 0.29 0.54 0.17 0.49 0.47

(b) Overture building footprints
Random Spatial OoS SK PL DE AT CZ

Aligned Winding Streets 0.61 0.46 0.29 0.28 0.27 0.37 0.31 0.25
Compact Development 0.66 0.55 0.16 0.09 0.12 0.30 0.18 0.11
Cul-de-Sac Layout 0.65 0.51 0.42 0.48 0.31 0.50 0.47 0.32
Dense Connected Developments 0.67 0.58 0.43 0.30 0.44 0.58 0.39 0.44
Dense Standalone Buildings 0.69 0.57 0.53 0.53 0.63 0.36 0.53 0.61
Dispersed Linear Development 0.96 0.65 0.16 0.09 0.31 0.16 0.07 0.19
Extensive Wide-Spaced Developments 0.52 0.36 0.27 0.30 0.47 0.13 0.23 0.22
Large Interconnected Blocks 0.69 0.60 0.46 0.41 0.35 0.57 0.57 0.42
Large Utilitarian Development 0.60 0.44 0.37 0.28 0.37 0.42 0.38 0.41
Linear Development 0.88 0.53 0.30 0.37 0.44 0.29 0.21 0.18
Sparse Open Layout 0.74 0.61 0.36 0.07 0.38 0.34 0.61 0.38
Sparse Road-Linked Development 0.72 0.49 0.29 0.37 0.34 0.32 0.21 0.21
Sparse Rural Development 0.88 0.71 0.41 0.35 0.55 0.15 0.50 0.47
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2 Morphometric classification

Table 2.6b has consistently higher values than Table 2.6a, in contrast to the pattern at
Level 3, reported in Table 2.4, where only the Central Urban Developments class
showed a significant difference. Table 2.6b has higher values of al teast .05 for Dense
Connected Developments , Large Interconnected Blocks, Large Utilitarian
Development, Sparse Open Layout. The one exception to the overall pattern is
Slovakia, where the Table 2.6a is higher.

2.1.3 Overture Spatial model

We provide the confusion matrix and example predictions for the Level 4 model, trained
using a spatial split on Overture data. We picked this model to provide example predic-
tions across multiple counties and urban areas of different sizes.

2.1.3.1 Confusion matrix

Figure 2.3 shows the confusion matrix for the model. The Classes are ordered to reflect
the hierarchical relationships. The first row, Dense Connected Developments and
the second, Large Interconnected Blocks, form one branch, Central Urban De-
velopments,one level up in the taxonomy. Similarly the 𝑛 and 𝑛 + 1 row form one
branch. The first four classes form one branch two levels up, and so on.

The results show that misclassified classes are generally misclassified within one or two
cophenetic distances in the taxonomy. In other words, if an ETC is misclassified there
is a high chance, it will be labeled as a related class in the full taxonomy.

2.1.3.2 Level 4 model example predictions

2.2 Discussion

The results from the study pertain to three areas – urban morphology, spatial modelling,
and data quality.

2.2.1 Urban morphology

With regard to urban morphology, the results show that modelling urban morphology is
possible. However, morphological types are heterogeneous, and the characteristics and
factors that are important vary across scales of dissimilarity.

The modelling results show that a lot of useful information can be learned morphologi-
cally from one country and transferred to new contexts. Table 2.3 shows that at Level
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2 Morphometric classification

Figure 2.3: Confusion matrix for the Spatial model Level 4 predictions. Normalised by
the True Label (row-wise)
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2 Morphometric classification

Figure 2.4: Example Level 4 predictions for the areas around Vienna (Austria), Munich
(Germany), Wroclaw (Poland) and Brno (Czechia)
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2 Morphometric classification

3, the out-of-sample (OoS) averages are close to the spatial split F1 score of approxi-
mately 0.6. This is comparable to other land use prediction models, with two caveats.
First, we are making predictions at a much higher level of detail—the individual building
level—than typical land use models. Second, we test the models in a more difficult but
more realistic scenario and report the possible out-of-sample scores. Furthermore, the
higher scores in Table 2.3, as well as the confusion matrix in Figure 2.3, also suggest
that we make reasonable misclassifications—one class at Level 4 is often misclassified as
another Level 4 class within the same Level 3 category, i.e., part of the same branch in
the ground truth taxonomy. If this were not the case, the Table 2.3 F1 scores would be
equal to or lower than the Table 2.5 scores.

Nevertheless, in spite of these results, urban morphology remains highly heterogeneous.
The differences between the country-specific models reflect the ability to use information
from the analysed urban forms of several countries to infer the urban form type in an
unseen country. If the results across these models were similar, it would imply that
urban form is similar across countries. The large differences suggest that underlying
national phenomena affect morphology. While this in itself is not a new finding, it has
not been quantitatively demonstrated before, especially based on tens of morphologi-
cal characteristics calculated using tens of millions of urban geometries across several
countries.

This heterogeneity, however, varies. Austria has, on average, the most similar morphol-
ogy to the other four Central European countries, whereas Czechia and Slovakia are the
most different. The level of morphological detail at which the analysis is carried out
also has an effect. At Level 3 of the morphological taxonomic tree the results across
countries are relatively more similar than at Level 4. Furthermore, Dense Standalone
Buildings , Large Interconnected Blocks , Large Utilitarian Development, are
more predictable across all the country models than other classes.

Identifying different types of urban form also requires specific types of characteristics
and data quality. The relative overall similarity between the scores in Table 2.3a and
Table 2.3b suggests that, except in the case of Central Urban Developments, building
polygon quality is not that important. Conversely, since the street network is shared,
the results show the importance of the street network and how it can compensate for
poor-quality building footprint data. As the required level of detail increases, however
(see Table 2.5a and Table 2.5b), data quality and aspects of building morphology such
as adjacency, configuration, and shape become more important.

2.2.2 Morphological data

The results also suggest that heterogeneous but more detailed data is preferable to
homogeneous but coarser data for urban morphological analysis. Furthermore, the mor-
phological pipeline developed for cadastre data can be run without modification on both

13



2 Morphometric classification

the Microsoft (homogeneous, generally more detailed) and Overture maps data (hetero-
geneous, generally more detailed).

The overall higher or equivalent performance of Overture maps data shows that this
data should be used when possible to identify urban morphological types for countries
not in the training data. Overture maps’ schema and easy access to the OpenStreetMap
street networks are additional benefits. Taken together, the results show that, overall,
when cadastre data is not available, Overture maps data should be used in place of
satellite-derived footprints.

The consistently higher performance of the spatial models also suggests using as much
data as possible in model training, from any source, since it provides some local con-
text.

2.2.3 Spatial modelling in general

The results from the comparisons highlight the need for complex train/testing dataset
splits when training models in the presence of spatial autocorrelation. When reporting
accuracy scores, many land use prediction models do not take into account spatial au-
tocorrelation. As consistently shown in the F1 score tables in this work, this results in
artificially higher scores. Even worse, in the case of more complex models, they may
not be learning the weights necessary to perform inference, but rather overfitting and
memorising the training data. This work further shows that, for urban morphological
predictions and analysis specifically, spatial leakage is ubiquitous.

There are other works and papers that have highlighted the need for spatially stratified
training of models. They suggest various schemes to split the data spatially - predefined
grids or locally derived boundaries or other approaches all together. What this paper
further highlights is the need to consider not just the specific type of spatial stratification,
but the scale of stratification as well. The consistently lower scores for the spatial split
and the individual countries models highlight the fact that there is spatial autocorrelation
of morphological features at multiple scales - local, as defined in this work based on h3
level 7 grid cells, and national as defined by national boundaries.

In the specific case of urban morphology, there are also other possible scales to consider,
such as regional or city-level, which could also affect predictions. We focused specifically
on the national scale, since data quality from OpenStreetMap varies widely at that level.
Furthermore, the most common use case for the model would be to predict morphologi-
cal classes for an entire country that is not part of the training data. Nevertheless, the
implications of our results are that when modelling spatial phenomena using machine
learning models, train/test splits should account for the specific properties of the phe-
nomenon under analysis. Works that do not explicitly do this risk reporting artificially
high accuracies that do not reflect real model use cases.
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3 Test and Verification Results: AI Model

This section expands on the Algorithm Design and Reference Data Selection sections,
detailing the dataset and previous analyses leading to the final model. We discuss
model performance in detail and present results of temporal predictions spanning 2016
to 2021.

3.1 Data

3.1.1 Satellite Imagery (Input)

Satellite image data used to train the XGBoost classifier was sourced from the GHS-
composite-S2 R2020A dataset1, as detailed in the Reference Data Selection. This dataset
is a global, cloud-free image composite derived from Sentinel-2 L1C data, covering Jan-
uary 2017 through December 2018. We utilised RGB bands at 10 metres per pixel
resolution.

3.1.1.1 Temporal Change Prediction

Sentinel-2 satellite imagery covering 2016 to 2021 was acquired using the Google Earth
Engine API through automated Python scripts (as described in GEE pipeline. Images
were selected for low cloud coverage, resulting in composite summary products for each
year.

3.1.2 Urban Fabric Classes (Outcome)

We employed labels from the Spatial Signatures Framework2, a typology classifying
British urban environments based on form (physical appearance) and function (usage).
Although our project specifically targets urban fabric classification based primarily on
visible form — which might be simpler to predict — the form-specific classification

1Corbane, C. et al., 2020. A global cloud-free pixel-based image composite from Sentinel-2 data. Data
in Brief, 31, p.105737.

2Fleischmann, M. & Arribas-Bel, D., 2022. Geographical characterisation of British urban form using
the spatial signatures framework. Scientific Data, 9(1), p.546.
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3 Test and Verification Results: AI Model

scheme remains under development (as detailed in the Sections on Morphometric Clas-
sification). Consequently, the comprehensive Spatial Signatures Framework currently
serves as a proxy aligning closely with our project’s urban characterisation objectives.

We used two versions of this dataset: one with 12 classes and another simplified version
with 7 classes. The 12-class scheme combines the various urbanity categories into a
single class, maintaining all other Spatial Signatures classes:

class_labels = {
'Accessible suburbia': 0,
'Connected residential neighbourhoods': 1,
'Countryside agriculture': 2,
'Dense residential neighbourhoods': 3,
'Dense urban neighbourhoods': 4,
'Disconnected suburbia': 5,
'Gridded residential quarters': 6,
'Open sprawl': 7,
'Urban buffer': 8,
'Urbanity': 9,
'Warehouse/Park land': 10,
'Wild countryside': 11

}

For the simplified 7-class version, we reclustered underlying data from the Spatial Sig-
natures Framework using K-means clustering (K=7). The resulting classes are:

class_labels_k7 = {
'Countryside agriculture': 0,
'Open sprawl': 1,
'Compact suburbia': 2,
'Urban': 3,
'Urban buffer': 4,
'Warehouse/Park land': 5,
'Wild countryside': 6

}

3.2 Data Preprocessing

3.2.1 Scale

Based on earlier experiments documented in the technical notes (Algorithm Design), we
adopted a final analytical scale of 250×250 metres across Great Britain (GB).
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3 Test and Verification Results: AI Model

A significant issue in our dataset is class imbalance, with specific urban fabric classes
being substantially underrepresented. This imbalance informed our decisions on model
architecture and loss function selection, motivating exploration of specialised methods to
handle imbalanced data. Yet, common modelling approaches were not sufficient, which
means we had to resort to data augmentation methods, as described below.

Figure 3.1: Sampling Strategy

3.2.2 Handling Imbalanced Dataset with Image Augmentation

Due to the significant class imbalance, particularly the underrepresentation of urban
classes, we implemented a sliding-window augmentation strategy for classes compris-
ing less than 10% of the dataset (all classes except Countryside agriculture and Wild
countryside).

This sliding-window approach systematically shifted the sampling window horizontally
and vertically by increments of 50, 100, 150, and 200 metres, significantly increasing the
volume of available training data for underrepresented classes.
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3 Test and Verification Results: AI Model

Figure 3.2: Sliding Window Augmentation

The images below shows class distributions before (left) and after (right) augmenta-
tion:

The following table summarises augmentation results, highlighting the substantial in-
crease in training samples for previously underrepresented classes:
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3 Test and Verification Results: AI Model

Class Before Augmentation After Augmentation
Accessible suburbia 15,054 129,620
Connected residential neighbourhoods 2,567 21,021
Countryside agriculture 1,367,999 1,367,999
Dense residential neighbourhoods 4,299 34,507
Dense urban neighbourhoods 3,636 31,657
Disconnected suburbia 2,644 20,113
Gridded residential quarters 1,518 12,849
Open sprawl 33,910 292,884
Urban buffer 381,283 381,283
Urbanity 2,495 21,929
Warehouse/Park land 21,282 195,105
Wild countryside 1,395,048 1,395,048
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4 Results

4.0.1 Classifier Performance

The final XGBoost classifier was trained using the augmented dataset and evaluated
using three metrics: micro accuracy, macro accuracy (every class has same weighting),
and macro F1 score. We validated the model using 5-fold spatial cross-validation at H3
resolution 6, ensuring an 80/20 training-testing split.

The table below summarises classifier performance for two classification schemes (7 and
12 classes) and two spatial contexts (with and without H3 resolution):

Classes (K) Spatial Context Accuracy Macro Accuracy Macro F1 Score
7 None 0.4924 0.3856 0.3389
7 H3 (res 5) 0.6959 0.5713 0.5221
12 None 0.4617 0.2666 0.2127
12 H3 (res 5) 0.6654 0.4328 0.3654

Including spatial context (H3 resolution) notably improved classification accuracy and
F1 scores. This improvement shows the importance of spatial context in predicting
urban fabric classes. Similarily, and as anticipated, the model with a lower number of
classes performed better compared to the one with 12 classes.

4.0.1.1 Per Class Performance

Examining the 12-class model with spatial context (H3 resolution 5) in greater detail
reveals that some classes consistently performed better than others. Specifically, classes
such as Wild countryside, Countryside agriculture and Urbanity achieved relatively high
accuracy, reflecting their visual distinctiveness in satellite imagery. In contrast, classes
like Dense residential neighbourhoods and Connected residential neighbourhoods showed
lower accuracy scores. These urban classes heavily depend on road connectivity pat-
terns, which the limited patch size (250×250 metres) does not adequately capture. This
limitation might likely contributed to their poorer performance.
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4 Results

Figure 4.1: Per class accuracy, 12 classes with spatial context

The model without spatial context exhibited similar performance patterns but consis-
tently lower accuracy overall. Interestingly, despite limited training examples, the class
Urbanity maintained relatively high accuracy, indicating that its visual characteristics
are clearly represented within the embeddings.

Figure 4.2: Per class accuracy

We further analysed the relationship between the number of training observations per
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4 Results

class and accuracy scores. While a moderate correlation exists — classes with more
training samples generally performed better — this does not fully explain the accuracy
differences. For example, Urbanity, Gridded residential quarters and Accessible subur-
bia performed notably better than classes with a comparable number of samples, such
as Dense residential neighbourhoods and Connected residential neighbourhoods. This
discrepancy likely arises from inherent visual representation of the signatures and distin-
guishability of these classes, rather than solely due to sample frequency.

Figure 4.3: Number of observations vs accuracy

4.1 Changes Over Time / Temporal Analysis

We use the trained XGBoost classifier to make predictions across the years 2016 to 2021.
The overall overlap between the initial year (2016) and final year (2021) remained high at
88%. This confirms that Spatial Signatures classes remained relatively stable across the
study period. However, minor variations may indicate either genuine change or model
uncertainty.

We measured urban fabric diversity using the Shannon Index across each year studied.
The index showed limited variability over time, typically around 1.86–1.87, except for a
noticeable spike in diversity in 2019 (2.007):

• 2016 → 2017: 88%
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4 Results

• 2017 → 2018: 88%
• 2018 → 2019: 86%
• 2019 → 2020: 86%
• 2020 → 2021: 88%

4.1.1 Diversity Analysis (Shannon Index)

We assessed changes in urban fabric diversity using the Shannon Index across the studied
years. The results are summarised in the table below, indicating slight fluctuations, with
the most notable increase in diversity occurring in 2019:

Year Shannon Index
2016 1.868
2017 1.863
2018 1.868
2019 2.007
2020 1.873
2021 1.872

The marked increase in the Shannon Index in 2019 suggests an increase in class diversity
during that year, followed by a subsequent return to previous levels. This could point
out some differences in the image as caused by weather or sensor in the year 2019.

4.1.2 Spatial Patterns of Change

Spatial analysis identified areas across England with frequent class transitions (map
below), particularly around major urban centres and suburban zones. These frequent
transitions may either represent genuine urban transformations or result from classifier
uncertainty, especially in ambiguous zones between visually similar Spatial signatures
classes.
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4 Results

Figure 4.4: Frequency Map

Class-specific analysis further highlighted particular Spatial signatures types prone to
transitions. The figure below shows which classes experienced frequent transitions:
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4 Results

Figure 4.5: Class Transitions

To better interpret these transitions, we calculated transition probabilities and organised
them into a structured confusion matrix. This matrix clearly shows the urban fabric
classes most likely to interchange over the studied period:
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4 Results

Figure 4.6: ‘Reasonable’ confusion matrix

Lastly, we analysed the inverse-probability-based distances of urban fabric classes over
time. Shorter distances represent a higher likelihood of transitioning or changing classes
from year to year, whereas longer distances indicate greater stability:

Figure 4.7: Probability of change across classes

This analysis shows urban fabric classes such as Urbanity, Warehouse/Park land, Dense
urban neighbourhoods, and Connected residential neighbourhoods have shorter inverse dis-
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4 Results

tances, indicating higher levels of dynamic change or redevelopment. Conversely, classes
such as Wild countryside and Countryside agriculture have longer distances, suggesting
greater temporal stability. Although these results align with expectations about urban
and rural dynamics, they may also reflect the classifier’s varying uncertainty across these
visually distinct environments.
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5 Discussion

5.0.1 Key Findings

The analysis shows that urban fabric classifications exhibit distinct temporal and spatial
dynamics, reflecting varying levels of stability and diversity over time. Notably, urban
classes such as Dense urban neighbourhoods, and Connected residential neighbourhoods
displayed higher probabilities of transition, indicating active urban transformation. Sim-
ilarly, suburban classes, such as Accessible suburbia, Disconnected suburbia and Urban
buffer, also show a higher probability of change between said classes. Conversely, rural
classes showed significant stability. This is most probably related to the uncertainty in
the classifier than connected to actual changes of the environment.

5.0.1.1 Lessons Learned

• Scale: Urban fabric classes, like spatial signatures, have fuzzy boundaries. Pixel-
level classifications provide the highest possible spatial resolution, which is bene-
ficial for detailed analysis. However, pixels often lack clear visual cues indicating
exact boundaries between classes, making pixel-level predictions challenging for
the model. Patch-level classification, although lower in spatial resolution depend-
ing on patch size, provided clearer visual context and resulted in better overall
performance.

• Embeddings vs fine-tuned foundation model: Fine-tuning foundation mod-
els involves significant complexity and requires careful design decisions. In our
case, the limited number of training examples was insufficient to achieve notice-
able improvements through fine-tuning. The effort required for fine-tuning did not
outweigh the simpler alternative of using off-the-shelf embeddings.

• Regional trends: Including regional contextual information substantially im-
proved the classifier’s accuracy. Nonetheless, we found it essential that embed-
dings themselves already capture enough visual detail for accurate classification,
ensuring that predictions remain robust even without regional context (and simply
do not just rely on the spatial information to make predictions).

• Data augmentation: The sliding window augmentation approach effectively ad-
dressed class imbalances, significantly improving model performance by increasing
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5 Discussion

representation of previously underrepresented urban fabric classes. This could
boost the performance of the classifier another 10-20% in terms of accuracy.

5.0.2 Potential Research Directions

There are a number of possible directions that would be beneficial to explore. The two
main ones are as follows:

• Misclassifications typically occur between visually similar urban fabric classes, in-
dicating inherent uncertainty in predictions. Incorporating prediction probabilities
into a secondary model could help address this issue. By explicitly using probability
scores from the initial classification as input for a refinement model — as previously
shown by Fleischmann and Arribas-Bel1 — we could better distinguish between
ambiguous cases. This approach may “smooth” predictions, reducing noise and
improving overall classification accuracy. Future work should explore how predic-
tion confidence scores can be systematically utilised, either by employing spatial
smoothing algorithms or by applying secondary machine learning models trained
specifically to correct uncertain predictions.

• Evaluating the generalisability of this methodological framework is crucial for its
wider applicability. Future research should test this modelling approach in dif-
ferent European regions, assessing whether the chosen methods, including data
preprocessing, augmentation strategies, spatial embeddings, and classifier archi-
tectures, perform consistently outside Great Britain. This would involve exploring
variations in urban form and regional urban planning contexts across Europe. Un-
derstanding these factors will help identify potential adjustments needed to ensure
reliable predictions when extending the model beyond the original study area.

1Fleischmann and Arribas-Bel, 2024. Decoding (urban) form and function using spatially explicit deep
learning. Computers, Environment and Urban Systems, 31, p.105737.
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6 Conclusion

The main finding of the modelling work is that it is possible to use alternative, non-
cadastre level data for the accurate prediction of urban fabric over time. These pre-
dictions are more detailed than existing large-scale urban fabric classifications and the
predicted classes are tailored to urban planners, researchers, policymakers and develop-
ment companies.

One of the main use cases identified by stakeholders was the ability to compare differ-
ent areas or identify similar cities or regions across countries. The models support this
by producing fine-grained, spatially consistent urban classifications that are tailored to
comparative analysis at a highly local, regional or continental scale. In addition, the
models can capture urban transitions over time, adding a valuable temporal dimension
to the analysis. This enables comparisons not only across space, but also through time -
making it possible to examine how urban areas evolve, diverge, or converge. The tempo-
ral insights unlocked by AI modelling enhance the overall utility of urban classifications
for planners, researchers, and policymakers.

A key insight from the modelling work is that increasing the amount of training data
improves predictive performance - particularly in the presence of class imbalance, where
underrepresented classes can otherwise lead to biased outcomes. This makes data sam-
pling strategies especially important for ensuring balanced model learning across diverse
urban forms. The morphometric classification, based on the Overture model, performs
well at the building level, and can be deployed at scale to generate detailed urban classes
across Europe. These outputs can serve as a rich source of training data for the AI-based
model, helping to fill gaps in underrepresented regions or classes. By leveraging mor-
phometric results across multiple countries, the AI model’s predictive accuracy can be
further improved - leading to more robust and precise time-series predictions of urban
change.

The modelling work also highlights the importance of spatially explicit machine learning
and data science. In both cases, incorporating spatial information consistently improves
model performance. Additionally, spatially explicit train/test splits provide a more real-
istic assessment of generalization, ensuring that models are evaluated under conditions
that reflect real-world deployment across unseen geographies.

Lastly, the interest and various feature requests from the stakeholders confirm the need
for a detailed urban classification at a granular level. Such a dataset can act as the
foundation for multiple derived data products adapted to particular use cases. Examples
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6 Conclusion

included comparisons between countries at different scales - neighbourhoods, cities and
regions.

6.1 Limitations

While the presented methods demonstrate strong potential for scalable urban classifica-
tion, several limitations should be acknowledged:

• Dependence on ground truth and input data quality While alternative datasets
such as Overture or satellite-derived imagery allow broad geographic coverage,
they cannot fully substitute for cadastral or on-the-ground verification data. The
quality and consistency of input data - particularly building footprints - remain
critical to model accuracy, especially at higher classification detail. Differences
in data completeness or geometric fidelity can significantly impact performance
across regions and classes.

• Uncertainty in temporal and spatial predictions Evaluating the accuracy of pre-
dictions over time is inherently challenging due to the absence of ground truth
data for intermediate years. Although the classifier identifies plausible transitions,
particularly in suburban areas, it is difficult to distinguish genuine urban change
from model uncertainty or noise introduced by seasonal imagery variation, cloud
cover, or sensor differences.

• Transferability across geographic and morphological contexts The models demon-
strate strong generalization within Great Britain and across several Central Euro-
pean countries. However, their performance varies in regions with distinct urban
morphologies, socio-economic conditions, or planning traditions not well repre-
sented in the training data. Expanding the training set to include more diverse
examples of urban fabric will likely improve transferability and robustness across
broader European or global contexts.
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