Data product

The EO workstream generated a data cube of the model outputs across Great Britain. The final data cube including predictions for the years 2016 to 2021 for 7 and 12 classes is available in two different flavours, both stored as a Zarr file (version 3) available from the links below.

Generic data cube:

https://s3.cl4.du.cesnet.cz/4f4743b6_4043_4e02_a3ba_0452aa7523a2:uscuni-public/eurofab/eurofab_predictions_datacube.zarr

Vector data cube:

https://s3.cl4.du.cesnet.cz/4f4743b6_4043_4e02_a3ba_0452aa7523a2:uscuni-public/eurofab/eurofab_predictions_vector_datacube.zarr

The size of each is approximately 1.8GB. See examples below for differences.

Metadata

The metadata YAML file describing the data of both:

name: urban_fabric_prediction
description: Urban fabric prediction from EO data


metadata:
  product_type: urban_fabric_map

  class_labels:
    k7:
      '0': Countryside agriculture
      '1': Open sprawl
      '2': Compact suburbia
      '3': Urban
      '4': Urban buffer
      '5': Warehouse/Park land
      '6': Wild countryside
    k12:
      '0': Accessible suburbia
      '1': Connected residential neighbourhoods
      '2': Countryside agriculture
      '3': Dense residential neighbourhoods
      '4': Dense urban neighbourhoods
      '5': Disconnected suburbia
      '6': Gridded residential quarters
      '7': Open sprawl
      '8': Urban buffer
      '9': Urbanity
      '10': Warehouse/Park land
      '11': Wild countryside

  cluster_numbers: [7, 12]
  time_range:
    start: 2016
    end: 2021

measurements:
  - name: prediction
    dtype: int32
    nodata: -1
    units: "1"
    aliases: [cluster]
  - name: probabilities
    dtype: float32
    nodata: -9999
    units: "1"
    aliases: [class_probs]

storage:
  crs: EPSG:4326

The dataset is chunked and can be read only partially, if needed.

Example code

Basic data cube

The data can be read with xarray and similar tools.

import os

import xarray as xr

os.environ["ZARR_V3_EXPERIMENTAL_API"] = "1"

path = "https://s3.cl4.du.cesnet.cz/4f4743b6_4043_4e02_a3ba_0452aa7523a2:uscuni-public/eurofab/eurofab_predictions_datacube.zarr"
ds = xr.open_zarr(path, zarr_format=3)
ds
<xarray.Dataset> Size: 4GB
Dimensions:        (k: 2, obs: 3634816, year: 6, class: 12)
Coordinates:
  * k              (k) int64 16B 7 12
    lon            (obs) float64 29MB dask.array<chunksize=(2000,), meta=np.ndarray>
  * obs            (obs) int64 29MB 0 1 2 3 ... 3634812 3634813 3634814 3634815
    lat            (obs) float64 29MB dask.array<chunksize=(2000,), meta=np.ndarray>
    geometry       (obs) object 29MB dask.array<chunksize=(3634816,), meta=np.ndarray>
  * year           (year) int64 48B 2016 2017 2018 2019 2020 2021
Dimensions without coordinates: class
Data variables:
    prediction     (obs, year, k) int32 174MB dask.array<chunksize=(2000, 1, 1), meta=np.ndarray>
    probabilities  (obs, class, year, k) float64 4GB dask.array<chunksize=(2000, 12, 1, 1), meta=np.ndarray>

Vector data cube

Vector data cube is encoded using CF conventions. The example code using xarray and xvec:

import os

import xarray as xr
import xvec

os.environ["ZARR_V3_EXPERIMENTAL_API"] = "1"

path = "https://s3.cl4.du.cesnet.cz/4f4743b6_4043_4e02_a3ba_0452aa7523a2:uscuni-public/eurofab/eurofab_predictions_vector_datacube.zarr"
ds = xr.open_zarr(path, zarr_format=3).xvec.decode_cf()
ds
<xarray.Dataset> Size: 4GB
Dimensions:        (geometry: 3634816, class: 12, year: 6, k: 2)
Coordinates:
  * geometry       (geometry) object 29MB POLYGON ((6220 901450, 6220 901700,...
  * k              (k) int64 16B 7 12
  * year           (year) int64 48B 2016 2017 2018 2019 2020 2021
Dimensions without coordinates: class
Data variables:
    probabilities  (geometry, class, year, k) float64 4GB dask.array<chunksize=(2000, 12, 1, 1), meta=np.ndarray>
    prediction     (geometry, year, k) int32 174MB dask.array<chunksize=(2000, 1, 1), meta=np.ndarray>
Indexes:
    geometry  GeometryIndex (crs=EPSG:27700)

See the documentation of Xvec for more details on vector data cubes.

For details on the contents, see the relevant Technical notes.